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Abstract

Purpose – Considering the impact of the Free Trade Zone (FTZ) policy on forecasting the port cargo
throughput, this paper constructs a fractional grey multivariate forecasting model to improve the prediction
accuracy of port cargo throughput and realize the coordinated development of FTZ policymaking and port
construction.
Design/methodology/approach – Considering the effects of data randomization, this paper proposes a
novel self-adaptive grey multivariate prediction model, namely FDCGM(1,N). First, fractional-order
accumulative generation operation (AGO) is introduced, which integrates the policy impact effect. Second,
the heuristic grey wolf optimization (GWO) algorithm is used to determine the optimal nonlinear parameters.
Finally, the novel model is then applied to port scale simulation and forecasting in Tianjin and Fujian where
FTZs are situated and compared with three other grey models and two machine learning models.
Findings – In the Tianjin and Fujian cases, the newmodel outperforms the other comparisonmodels, with the
least mean absolute percentage error (MAPE) values of 6.07% and 4.16% in the simulation phase, and 6.70%
and 1.63% in the forecasting phase, respectively. The results of the comparative analysis find that after the
constitution of the FTZs, Tianjin’s port cargo throughput has shown a slow growth trend, and Fujian’s port
cargo throughput has exhibited rapid growth. Further, the port cargo throughput of Tianjin and Fujian will
maintain a growing trend in the next four years.
Practical implications – The new multivariable grey model can effectively reduce the impact of data
randomness on forecasting. Meanwhile, FTZ policy has regional heterogeneity in port development, and the
government can take different measures to improve the development of ports.
Originality/value – Under the background of FTZ policy, the new multivariable model can be used to
achieve accurate prediction, which is conducive to determining the direction of port development and planning
the port layout.

Keywords Port cargo throughout, Free Trade Zone policy, FDCGM(1,N) model, Dummy variable,

Fractional order, Grey wolf optimizer

Paper type Research paper

1. Introduction
China has been deepening its basic state policy of open-door to the outside world and
exploring establishing a Free Trade Zone (FTZ) for the past few years. It aims to facilitate
investment and foreign trade through the construction of multifunctional special economic
zones, probe new ways and accumulate new experiences for the comprehensive deepening of
reform (Yao and Whalley, 2016). Since 2013, China has laid out 21 FTZs across the country
throughmultiple batches, initially forming a basic pattern of “1þ 3þ7þ 1þ6þ 3.”Each FTZ
is situated in a significant economic region, serving specific economic zones and having
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distinct development positioning. With the gradual improvement of the construction layout
of the FTZ, a reform and opening-up innovation pattern covering the east, west, north, south
and centre has been formed. Bold exploration and remarkable results have been achieved in
areas such as investment, foreign trade and financial services for the real economy (Chen
et al., 2022; Wang et al., 2022a).

Ports are important transportation hubs and open gateways and play an essential role in
accelerating international trade and creating economic benefits (Gonzalez Aregall et al., 2018).
Its development is of great significance to the construction of FTZs while establishing FTZs
will be conducive to port improvement. Port development studies indicate port cargo
throughput as an essential indicator of port production capacity and operation. It is also the
basis for port planning and construction, which can reflect themodernization level of ports and
the degree of foreign trade (Wiegmans et al., 2015). However, due to the persistent global
economic downturn, the size of Chinese ports has been saturated, and their development
prospects face many challenges and risks (Chen et al., 2020; Wan et al., 2021). Then, in the
context of FTZ policy, improving the prediction exactness of port cargo throughput and
realizing precise forecasting are conducive to determiningport development direction, planning
the port layout and better planning of the port logistics industry. Thus, policy formulation and
port construction in the FTZs can be realized through synergistic development.

In summary, considering that the port cargo throughput data is difficult to obtain and
affected by many factors, this paper constructs a fractional grey multivariate forecasting
model considering the impact of the FTZ policy to forecast the port cargo throughput. The
three main contributions of this study are as follows:

(1) Although the traditional grey multivariate model has good forecasting performance for
time series data, the problem of forecasting time series with randomness has not been
perfectly solved. In this paper, a new greymultivariate forecastingmodel (FDCGM(1,N))
is constructed based on theGM(1,N)model by introducing the fractional-orderAGO and
a generalized time response function with a forecasting function is derived. Meanwhile,
optimal nonlinear parameters of the new model are obtained by the GWO algorithm,
which significantly enhances the description of the new model.

(2) FDCGM(1,N) model is used to simulate and forecast port cargo throughput of Tianjin
and Fujian Province implementing FTZ policy. Importantly, compared with three
other grey models and two machine learning models, the new model has the smallest
mean absolute percentage errors (MAPEs) in the in-sample prediction interval, which
are 6.70% and 1.63%, respectively.

(3) This paper applies the FDCGM(1,N) model to forecast and analyse the port cargo
throughput of Tianjin and Fujian Province from 2022 to 2025. It is found that port
development under the FTZ policy is regionally heterogeneous. It is estimated that in
2025, the port cargo throughput of Tianjin will reach 762,348,800 tons and Fujian
province’s port cargo throughput will reach 1,017,638,300 tons.

The rest of the paper is organized as follows. Section 2 details previous studies on FTZS and
ports as well as grey models. Section 3 introduces the model evaluation method, the
parameter solution algorithm and the research framework. Section 4 applies the FDCGM(1,N)
model to the port cargo throughput forecasts of Tianjin and Fujian province implementing
FTZ policy and discusses the port cargo growth rates and the forecast results. Section 5, then,
presents the conclusions and the future outlook.

2. Literature review
As a functional node for the flow of goods trade, ports are the ligament of the entire supply
chain of FTZs and the centre of the flow of goods, capital and information (Wan et al., 2014).
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Consequently, many scholars have explored the impact of FTZ policy on port development. For
example, Chen et al. (2018) constructed a system to assess the development performance of
typical FTZs. They conducted an empirical study on six selected distinctive FTZs. Liu et al.
(2021) evaluated port efficiency in the context of FTZ policy, identified its influencing factors
and proved that the scale of port operation significantly positively impacts port efficiency. Li
et al. (2021) studied the impact of FTZ policy on the evolution of port-listed companies in FTZs.
They found that port-listed companies’ development performance continuously grewunder the
FTZ policy. Considering the port throughput and the scale of urban import and export trade,
Fan et al. (2022) selected four ports established earlier in FTZs and used the allometric growth
model and linear scale factor to empirically test the FTZ policy’s impact on the ports.

In addition, a lot of scholars have also conducted in-depth research on the prediction of port
cargo throughput. At present, the prediction methods of port cargo throughput mainly include
traditional econometric model, artificial intelligence model and grey model. In terms of
traditional econometric models, Sanguri et al. (2022) proposed an intertemporal forecasting
model based on exponential smoothing to forecast container throughput at the Port of Los
Angeles. In terms of the artificial intelligencemodel, Cuong et al. (2022) utilized a neural network
predictive controller and adaptive fractional-order supervision sliding mode control to handle
throughput under external disturbances. In the meantime, some scholars have also used the
decomposition integration method (Du et al., 2019; Jin et al., 2023), SARIMA and machine
learning hybridmethod (Huang et al., 2022;Mo et al., 2018) for forecasting container throughput
prediction. In fact, port cargo throughput data is usually provided by port authorities, customs,
shipping companies, etc., and its availability is limited especially when some ports may be
unwilling or unable to disclose it. As a result, the accuracy of the model predictions mentioned
above, which require a large amount of data support, may be compromised. For this reason,
some scholars have used grey forecasting models to predict port cargo throughput. For
example, Hsu et al. (2020) proposed a newmodel combining grey share predictionwithMarkov
chain andgrey residual correction, and proved that themodel has goodprediction performance.

Deng (1982) first proposed the grey theory. Based on this theory, later scholars optimized the
grey univariate predictionmodel fromvarious perspectives, such asmodel structure (Yang and
Wang, 2022; Zeng et al., 2020c), initial value optimization (Zeng et al., 2020b), background value
(Wu et al., 2020a) and cumulative generation operator (Wang et al., 2022c; Zeng et al., 2023a, b),
and achievedbetter prediction results. Currently, grey predictionmodels havebeenwidelyused
to dealwith theprediction problems in the fields of energyprice (Duan et al., 2022; DuanandLiu,
2021), air quality (Du et al., 2021; Shi and Wu, 2020; Zeng et al., 2021), food production (Zeng
et al., 2020a, b, c), new energy vehicle sales (Liu et al., 2022), energy consumption (Liu andWu,
2021; Moonchai and Chutsagulprom, 2020; Wu et al., 2020b), output of high-technology
industries (Ding et al., 2022) and epidemic disease transmission (Saxena, 2021). However,
considering the influence of external factors, the multivariable grey model is gradually being
used more and more to compensate for the shortcomings of univariate models. As the most
basic multivariate grey model, the GM(1,N) model is widely used (Duan and Luo, 2022; Zeng
et al., 2023a, b; Zhang et al., 2022). Unfortunately, the model also has some problems in the
modelling process (Ren et al., 2023; Zeng et al., 2019). Therefore, many scholars optimize the
GM(1,N) model from different perspectives to enhance the applicability of the model.

In terms of dummy variables, Ding et al. (2018) added dummy variables into the GM (1,N)
model, gave a specific modelling approach, and verified the availability of the neoteric model
by examples.Wan et al. (2022) introduced dummy variables’ interactions into Ding’smodel to
establish a new grey multivariate model, which improved the model’s prediction accuracy.
Meanwhile, considering the impact of fractional-order accumulative generation, they
introduced fractional-order into the new model to enhance the model’s simulation and
forecasting performance for time series with randomness. For instance, Wang et al. (2022b)
introduced a new kind of fractional order, namely Gr€unwald-Letnikov fractional-order

Grey
multivariable

model



calculus, to enhance model adaptability. Yan et al. (2022) introduce fractional-order
cumulative generation into themultivariable time-delayed greymodel to reduce the impact of
randomness of online public opinion data on the prediction results and optimize themodelling
parameters using particle swarm optimization.

3. Methods
3.1 The existing GM(1,N) model
In this paper, the GM(1,N) model is selected as the benchmark model. In order to fully
demonstrate the new model proposed, the GM(1,N) model is briefly introduced at first.

Definition 1. Zeng et al. (2016) Let the original sequences X
ð0Þ
1 and X

ð0Þ
i ði ¼ 2; 3; � � � ;NÞ

denote the system behaviour sequences and driver sequences, respectively,

and their 1-order accumulative generation sequences X
ð1Þ
1 and X

ð1Þ
i ,

respectively, and Z
ð1Þ
1 is called the background value and is generated by

X
ð1Þ
1 where Z

ð1Þ
1 ðkÞ ¼ 1

2
3 ½X ð1Þ

1 ðkÞ þ X
ð1Þ
1 ðk− 1Þ�; k ¼ 2; 3; � � � ; n.

Then,

x
ð0Þ
1 ðkÞ þ az

ð0Þ
1 ðkÞ ¼

XN
i¼2

bix
ð1Þ
i ðkÞ (1)

is the GM(1,N) model. Where a is the system development factor, bix
ð1Þ
i ðkÞ is the driving term,

and bi is the driving coefficient.

Definition 2. Let ba ¼ ½a; b2; � � � ; bN �T be the parameter column of the model. Then,

dxð1ÞðtÞ
dt

þ axð1ÞðtÞ ¼
XN
i¼2

bix
ð1Þ
i ðkÞ (2)

is the whitening equation of the GM(1,N) model.

3.2 The proposed FDCGM(1,N) model
In this section, a new grey multivariate model is proposed, referred to as the FDCGM(1,N)
model. Before the new model is introduced, the fractional-order cumulative generating series
and the cumulative-decreasing generating series are first introduced.

Definition 3. Let sequence X
ð0Þ
i be as described in Definition 1. Then, the sequence

X
ðrÞ
i ¼ ðxðrÞi ð1Þ; xðrÞi ð2Þ; � � � ; xðrÞi ðnÞÞ is known as the r-order accumulation of

X
ð0Þ
i , and the sequence X

ð−rÞ
i ¼ ðxð−rÞi ð1Þ; xð−rÞi ð2Þ; � � � ; xð−rÞi ðnÞÞ is known as

the r-order inverse accumulation of X
ð0Þ
i . Specifically,

x
ðrÞ
i ðkÞ ¼

Xk
s¼1

Γðr þ k� sÞ
Γðk� sþ 1ÞΓðrÞx

ð0Þ
i ðsÞ; k ¼ 1; 2; � � � ; n: (3)

x
ð−rÞ
i ðkÞ ¼

Xk−1
s¼0

ð−1Þs Γðr þ 1Þ
Γðsþ 1ÞΓðr � sþ 1Þx

ð0Þ
i ðk� sÞ; k ¼ 1; 2; � � � ; n: (4)
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Definition 4. Let the sequencesX
ð0Þ
i andX

ðrÞ
i be as described in Definition 1 andDefinition

3, respectively, and the sequence of dummy variables D
ð0Þ
j ¼ ðdð0Þ

j ð1Þ;
d
ð0Þ
j ð2Þ; � � � ; dð0Þj ðnÞÞ; dð0Þ

j ðkÞ ¼ 0 or 1, which the r-order accumulative

generation sequence is D
ðrÞ
j ðj ¼ M þ 1;M þ 2; � � � ;NÞ. Z

ðrÞ
1 is the

background value sequence of X ðrÞ, which is Z
ðrÞ
1 ¼ ðzðrÞ1 ð1Þ; zðrÞ1 ð2Þ; � � � ;

z
ðrÞ
1 ðnÞÞ, zðrÞ1 ðkÞ ¼ 1

2
3 ½xðrÞ1 ðkÞ þ x

ðrÞ
1 ðk− 1Þ�.

Then,

x
ðrÞ
1 ðkÞ � x

ðrÞ
1 ðk� 1Þ þ az

ðrÞ
1 ðkÞ ¼

XM
i¼2

bix
ðrÞ
i ðkÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðkÞ (5)

is basic form of FDCGM(1,N) model.PM
i¼2

bix
ðrÞ
i ðkÞ is the quantified variable driver;

PN
j¼Mþ1

bjd
ðrÞ
j ðkÞ is the dummy variable driver,

which takes into account the influence of qualitative factors on the dependent variable; bj is
the driving coefficient of the accumulative generation term of the dummy variable.

Theorem 1. Let X
ð0Þ
i , X

ðrÞ
i , D

ð0Þ
j and D

ðrÞ
j be as described in Definition 1, Definition 3 and

Definition 4. Themodel parameters are listed asbb ¼ ½a; b2; � � � ; bM ; � � � ; bN �T
are known. Where,

Y ¼

0BBBBBBBBBB@

x
ðrÞ
1 ð2Þ � x

ðrÞ
1 ð1Þ

x
ðrÞ
1 ð3Þ � x

ðrÞ
1 ð2Þ

..

.

x
ðrÞ
1 ðnÞ � x

ðrÞ
1 ðn� 1Þ

1CCCCCCCCCCA

B ¼

0BBBBBBBBBB@

−z
ðrÞ
1 ð2Þ x

ðrÞ
2 ð2Þ � � � x

ðrÞ
M ð2Þ d

ðrÞ
Mþ1ð2Þ � � � d

ðrÞ
N ð2Þ

−z
ðrÞ
1 ð3Þ x

ðrÞ
2 ð3Þ � � � x

ðrÞ
M ð3Þ d

ðrÞ
Mþ1ð3Þ � � � d

ðrÞ
N ð3Þ

..

. ..
.

1 ..
. ..

.
1 ..

.

−z
ðrÞ
1 ðnÞ x

ðrÞ
2 ðnÞ � � � x

ðrÞ
M ðnÞ d

ðrÞ
Mþ1ðnÞ � � � d

ðrÞ
N ðnÞ

1CCCCCCCCCCA

(6)

Then, the least squares of the parameter columns satisfy:

(1) When n ¼ N þ 1, bb ¼ B−1Y ; jBj≠ 0;

(2) When n > N þ 1, bb ¼ ðBTBÞ−1BTY ;
��BTB

��≠ 0;

(3) When n < N þ 1, bb ¼ BTðBTBÞ−1Y ;
��BTB

��≠ 0.
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Proof. Bringing k ¼ 2; 3; � � � ; n into the FDCGM(1,N) model, we get

x
ðr−1Þ
1 ð2Þ ¼ −ax

ðr−1Þ
1 ð2Þ þ

XM
i¼2

bix
ðrÞ
i ð2Þ þ

XN
j¼Mþ1

bjd
ðrÞ
j ð2Þ

x
ðr−1Þ
1 ð3Þ ¼ −ax

ðr−1Þ
1 ð3Þ þ

XM
i¼2

bix
ðrÞ
i ð3Þ þ

XN
j¼Mþ1

bjd
ðrÞ
j ð3Þ

..

.

x
ðr−1Þ
1 ðnÞ ¼ −ax

ðr−1Þ
1 ðnÞ þ

XM
i¼2

bix
ðrÞ
i ðnÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðnÞ

(7)

That is, from the least squares method, we have Y ¼ Bbb.
(1) When n ¼ N þ 1 and jBj≠ 0, the inverse matrix of B exists and the system of

equations has a unique solution, we can obtain bb ¼ B−1Y .

(2) When n > N þ 1andB is column-full rank, there is a column-full rank solution ofB to
B ¼ DC. In turn, the generalized matrix Bþ of B can be obtained as

Bþ ¼ C
T
�
CC

T
�−1�

DTD
�−1

DT ;bβ ¼ C
T
�
CC

T
�−1�

DTD
�−1

DTY

Since B is a full-rank matrix, C can be taken as a unit matrix, B ¼ DIN , B ¼ D, we get

bb ¼ C
T
�
CC

T
�−1�

DTD
�−1

DTY ¼ �DTD
�−1

DTY ¼ �BTB
�−1

BTY

(3) When n < N þ 1 and B is a row full-rank matrix, D can be taken as a unit matrix,
B ¼ In−1C, B ¼ C, then we gain

bb ¼ C
T
�
CC

T
�−1�

DTD
�−1

DTY ¼ C
T
�
CC

T
�−1

Y ¼ BT
�
BBT

�−1
Y

Theorem 2. Let X
ð0Þ
i , X

ðrÞ
i , D

ð0Þ
j and D

ðrÞ
j be as described in Definition 1, Definition 3 and

Definition 4, we have:

(1) The solution of the whitening differential equation of the FDCGM(1,N) model is

x
ðrÞ
1 ðtÞ ¼ e−at

"
x
ðrÞ
1 ð0Þ � t

 XM
i¼2

bix
ðrÞ
i ð0Þ þ

XN
j¼Mþ1

bjd
ðrÞ
j ð0Þ

!
þ

XN
i¼2

Z  XM
i¼2

bix
ðrÞ
i ðtÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðtÞ

!
eatdt

# (8)
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(2) When the magnitude of change in the driver sequence X
ð1Þ
i ði ¼ 2; 3; � � � ;NÞ is small,

the model drivers
PM
i¼2

bix
ð1Þ
i ðtÞ and PN

j¼Mþ1

bjd
ð1Þ
j ðtÞ can be considered as grey constants. The

approximate time corresponding function sequence of the grey differential equation of the
FDCGM(1,N) model is:

bxðrÞ1 ðkÞ ¼ e−aðk−1Þ
"
x
ðrÞ
1 ð1Þ �

 XM
i¼2

bix
ðrÞ
i ðkÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðkÞ

!
1

a

#
þ
 XM

i¼2

bix
ðrÞ
i ðkÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðkÞ

!
1

a
(9)

(3) The time response equation of bxðrÞ1 ðkÞ can be obtained by the r-order accumulative

generation of bxð0Þ1 ðkÞ:

bxð0Þ1 ðkÞ ¼

8>><>>:
x
ð0Þ
1 ð1Þ k ¼ 1

�bxðrÞ1

�ð−rÞ
ðkÞ ¼

Xk−1
j¼0

ð�1Þj Γðr þ 1Þ
Γðjþ 1ÞΓðr � jþ 1ÞbxðrÞ1 ðk� jÞ k ¼ 2; 3; � � � ; n

(10)

Proof.

(1) From the whitening equation, we can obtain the general solution equation:

x
ðrÞ
1 ðtÞ ¼ e−at

"XN
i¼2

Z  XM
i¼2

bix
ðrÞ
i ðtÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðtÞ

!
eatdt þ e

#
(11)

Where e is a constant to be determined. Bringing x
ðrÞ
i ð0Þ into the above equation yields, we

can get

e ¼ x
ðrÞ
1 ð0Þ �

XN
i¼2

Z  XM
i¼2

bix
ðrÞ
i ðtÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðtÞ

!
eatdt (12)

Then, Eq. (8) is proved.

(2) Let the model drivers
PM
i¼2

bix
ð1Þ
i ðtÞ and PN

j¼Mþ1

bjd
ð1Þ
j ðtÞ be considered as grey constants,

and then the approximate time corresponding function sequence of the grey differential

equation of the FDCGM(1,N) model is

bxðrÞ1 ðkÞ ¼ e−aðk−1Þ
"
x
ðrÞ
1 ð1Þ �

 XM
i¼2

bix
ðrÞ
i ðkÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðkÞ

!
1

a

#
þ
 XM

i¼2

bix
ðrÞ
i ðkÞ þ

XN
j¼Mþ1

bjd
ðrÞ
j ðkÞ

!
1

a

(3) Based on (2),

When k ¼ 1, bxð0Þ1 ð1Þ ¼ x
ð0Þ
1 ð1Þ.
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When k ¼ 2; 3; � � � ; n, by the r-order inverse accumulative generation operator (I-AGO)

x
ð−rÞ
i ðkÞ ¼

Xk−1
s¼0

ð−1Þs Γðr þ 1Þ
Γðsþ 1ÞΓðr � sþ 1Þx

ð0Þ
i ðk� sÞ; k ¼ 1; 2; � � � ; n:

We can get

bxð0Þ1 ðkÞ ¼
�bxðrÞ1

�ð−rÞ
ðkÞ ¼

Xk−1
s¼0

ð−1Þs Γðr þ 1Þ
Γðsþ 1ÞΓðr � sþ 1ÞbxðrÞ1 ðk� sÞ (13)

In summary, Eq. (10) is proved.

Theorem 3. When bj and r in the FDCGM(1,N) model take disparate values, it can be
transformed into existing grey models, including GM(1,N) model, FGM(1,N)
model and DVCGM(1,N) model.

Proof.

(1) When bj ¼ 0 and r ¼ 0, the new model can be transferred to the GM(1,N) model
(Zeng et al., 2016).

dx1

dt
þ ax1ðtÞ ¼

XM
i¼2

bixiðtÞ (14)

(2) When bj ¼ 0 and r≠ 0, the new model can be turned to the FGM(1,N) model (Wang
and Li, 2020).

dx
ðrÞ
1

dt
þ ax

ðrÞ
1 ðtÞ ¼

XM
i¼2

bix
ðrÞ
i ðtÞ (15)

(3) When bj ≠ 0 and r ¼ 0, the new model can be the DVCGM(1,N) model (Ding et al.,
2018).

dx1

dt
þ ax1ðtÞ ¼

XM
i¼2

bixiðtÞ þ
XN

j¼Mþ1

bjdjðtÞ (16)

3.3 Optimization of the fractional order based on GWO
In the FDCGM(1,N) model, the fractional order r needs to be optimized. It can be solved by
constructing a nonlinear optimization problem and choosing MAPEs as the objective
function. The objective function and each constraint condition can be expressed as:

min
r
MAPES ¼ 1

m� 1

Xm
k¼1

�����xð0Þ1 ðkÞ � bxð0Þ1 ðkÞ
x
ð0Þ
1 ðkÞ

�����3 100% (17)
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s:t:

bb ¼ ½a; b2; � � � ; bM ; � � � ; bN �T

B ¼

0BBBBBBBBBBBBB@

−z
ðrÞ
1 ð2Þ x

ðrÞ
2 ð2Þ � � � x

ðrÞ
M ð2Þ d

ðrÞ
Mþ1ð2Þ � � � d

ðrÞ
N ð2Þ

−z
ðrÞ
1 ð3Þ x

ðrÞ
2 ð3Þ � � � x
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The above objective function and constraints suggest that parameter optimization of
FDCGM(1,N) model is a nonlinear optimization problem with multiple nonlinear constraints.
In this paper, we will apply the grey wolf optimization (GWO) algorithm to find new model’s
optimal fractional order r. According to previous studies (Mirjalili et al., 2014), the steps of
GWO include social stratification, follow the prey, and find prey and attack it.

3.4 Performance metrics
This sectionwill define the following twometrics to estimate theexactnessof theFDCGM(1,N)model.

The first one is absolute percentage error (APE), which is set to be represented concretely:

APEðkÞ ¼
�����xð0Þ1 ðkÞ � bxð0Þ1 ðkÞ

x
ð0Þ
1 ðkÞ

�����3 100% (18)

The second one is the MAPE. It can reflect the difference between fitting and original values
that APE cannotmeasure. Suppose there is a total of raw data used asmodelling data to judge
the model’s simulation accuracy. The remaining data are applied as prediction data to
evaluate the model’s prediction veracity. The following two equations can express the
average percentage error of simulation and prediction:

MAPES ¼ 1

m� 1

Xm
k¼1

�����xð0Þ1 ðkÞ � bxð0Þ1 ðkÞ
x
ð0Þ
1 ðkÞ

�����3 100% (19)
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MAPEP ¼ 1

n�m

Xn
k¼mþ1

�����xð0Þ1 ðkÞ � bxð0Þ1 ðkÞ
x
ð0Þ
1 ðkÞ

�����3 100% (20)

In the above equation, xð0ÞðkÞ and bxð0ÞðkÞ represent the actual and predicted values of the
original data, respectively.

3.5 Modelling process
According to the modelling idea of the FDCGM(1,N) model, this section elaborates on the
modelling steps (see Figure 1).

Step 1: Selection of model variables. Based on practical application cases, policy dummy
variables are identified, and three main influencing factors of port cargo throughput are
decided by grey correlation analysis.

Step 2: Based on the selected variables, the original data sequence X
ð0Þ
i is created and the

corresponding r-order accumulating generation sequence is X
ðrÞ
i .

Figure 1.
Modelling step
diagram of the
FDCGM(1,N) model
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Step 3: The FDCGM(1,N) model is developed according to Theorem 1, and the model
parameters are estimated. The time response equation is calculated according to Theorem
2 and used for subsequent simulations and predictions.

Step 4: The nonlinear parameter optimization problem is established, and GWO obtains
the optimal fractional order with the minimization of the mean percentage error of the
simulation as the objective function.

Step5: SequenceX
ðrÞ
1 is generated by r-order I-AGO to obtain the original data sequence’s

simulated and predicted sequence X
ð0Þ
1 . If the new model’s MAPEs and MAPEp meet the

prediction accuracy requirements, they can be used for out-of-sample prediction for
practical applications. Otherwise, the model needs to be improved.

Step6:The newmodel through evaluation is applied to predict the port cargo throughput
of Tianjin and Fujian, which implements the policy of FTZ from 2022 to 2025, and at the
same time prediction results and the growth rate are compared and analysed, and
corresponding policy recommendations are put forward.

4. Empirical analysis
This article selects the Tianjin and Fujian provinces that have established FTZs and have
relatively unabridged index data as objects of study. Given that more and more factors
influence port cargo throughput, grey correlation analysis is applied to ascertain port cargo
throughput’s main influencing factors in two coastal provinces (cities). Specifically, the main
influencing factors of Tianjin’s port cargo throughput are the secondary industry-added
value, road freight volume and total import and export volume, among which the secondary
industry-added value has the most significant influence, with a correlation value of 0.6798.
The correlation between port throughput and total import and export volume, GDP andwater
freight volume is strong in Fujian province, and total import and export volume is most
closely related to port cargo throughput. The data on port cargo throughput (measured in
millions of tons) and the influencing factors are from statistical yearbooks published by the
National Bureau of Statistics and local statistical bureaus from 2005 to 2021.

4.1 Case 1: simulation and prediction of Tianjin’s port cargo throughput
4.1.1 Model comparison and analysis of port cargo throughput in Tianjin. Tianjin FTZ was
established in 2015. Benefiting from the FTZ policy dividend, Tianjin’s ports actively carry
out offshore trade, which helps port development. Through grey correlation analysis, the
secondary industry-added value, road freight volume, and total import and export volume are
identified as the three main influencing factors of port cargo throughput in Tianjin. The data
can be seen in Table 1.

The optimal order of the newmodel is�0.6195 after optimization by the GWO. According
to the modelling steps, the data in Table 1 are modelled, and the calculation formula of the
FDCGM(1,N) model can be obtained as follows:

bxð−0:6195Þ1 ðkÞ¼ e−0:6687*ðk−1Þ *xð−0:6195Þ1 ð1Þþ 1

0:6687
*
�
1� e−0:6687*ðk−1Þ

�
�
7:3537x

ð−0:6195Þ
2 ðkÞ�0:0315x

ð−0:6195Þ
3 ðkÞ�3:5034x

ð−0:6195Þ
4 ðkÞ�2018:7736d

ð−0:6195Þ
5 ðkÞ

�
From Table 2 and Figure 2, the port cargo throughput of Tianjin in 2005–2021 fluctuates
relatively smoothly and shows a stable upward trend overall. Compared with the other three
grey and two machine learning models, the new model best fits the original data. Especially
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for the simulations and forecasts of recent years, the simulated and forecasted values are
approximate to raw values. Meanwhile, other comparison models have large deviations from
the actual values. Figure 3 shows that the new model has the least APE fluctuation and is
more stable, while the Backpropagation Neural Network (BPNN) and Long Short-Term
Memory (LSTM) models will have a larger APE and poor stability at a certain time.

In terms of model analysis, DVCGM(1,N) model’s MAPEs and MAPEp are smaller than
those of the GM(1,N) and DGM(1,N) model. It implies that FTZ policy does have an impact on
Tianjin’s port cargo throughput. Meanwhile, the FDCGM(1,N) model’s MAPEs and MAPEp
are smaller than those of the DVCGM(1,N) model. It means that the impact of port cargo
throughput in previous years needs to be considered when forecasting port cargo throughput
in Tianjin. Figure 4 shows that the FDCGM(1,N) model performs well in simulation and
forecasting. Its simulation and in-sample prediction errors are the smallest, at 6.07% and
6.70%, respectively. These indicate that the new model effectively identifies serial trends of
port cargo throughput in Tianjin. It may be due to the inclusion of policy dummy variables,
and fractional-order AGO in the new model, significantly improving the time series’
estimated performance and stability.

4.1.2 Forecast Tianjin’s port cargo throughput in 2022–2025. The FDCGM(1,N) model
performs well in the Tianjin simulation and forecasting port cargo throughput. Thus, using
all the data from 2005 to 2021, the new model is used to predict Tianjin’s port cargo
throughput in 2022–2025. As seen fromTable 3, the port cargo throughput of Tianjin shows a
stable growth trend from 2022 to 2025. In recent years, Tianjin has taken advantage of FTZ’s
innovation and used its strategic port resources and hard-core benefits to refine the port.
Tianjin’s port carrying capacity has been significantly improved; port cargo throughput and
infrastructure capacity have been substantially improved; and the construction of intelligent,
green and safe ports has been practical. Tianjin will further enhance the port collection and
distribution network, strengthen the role of shipping hubs and accelerate the formation of
Tianjin port as the centre of the northern international shipping hub. At the same time, the
port must implement the “smart supervision” mode of operation, build an innovative, green
world-class port, upgrade the port economy, better serve the Jing-Jin-Ji region and strengthen

Year

Port cargo
throughput (10000

tons)

Secondary industry-
added value (100 million

yuan)

Road freight
volume (10000

tons)

Total import and
export volume (USD

100 million) D

2005 24069.00 1630.53 19850.00 533.87 0
2006 25760.00 1834.54 20290.00 645.73 0
2007 30946.00 2123.63 23500.00 715.50 0
2008 35593.00 2659.71 18160.00 805.39 0
2009 38111.00 2808.74 19800.00 639.44 0
2010 41325.00 3259.74 20855.00 822.01 0
2011 45338.00 3756.26 23505.00 1033.91 0
2012 47697.00 4134.03 27735.00 1156.23 0
2013 50063.00 4407.10 28206.00 1285.28 0
2014 54002.00 4615.50 31130.00 1339.12 0
2015 54051.00 4489.59 30551.00 1143.47 1
2016 55056.00 4367.97 32841.00 1026.51 1
2017 50056.00 4564.06 34720.00 1129.45 1
2018 50774.00 4835.30 34711.00 1225.11 1
2019 49220.00 4947.18 31250.00 1066.45 1
2020 50290.00 4911.77 32261.00 1059.31 1
2021 52954.00 5854.27 34527.00 1325.65 1

Source(s): Table created by authors

Table 1.
Observations of
Tianjin’s port cargo
throughput and the
related factors from
2005 to 2021
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Tianjin FTZ’s functional positioning. In 2025, the port cargo throughput of Tianjin will reach
762,348,800 tons.

4.2 Case 2: simulation and prediction of Fujian province’s port cargo throughput
4.2.1 Model comparison and analysis of port cargo throughput in Fujian province. Fujian FTZ
is based on promoting cross-strait economic and trade cooperation. The correlation between
port cargo throughput and its influencing factors in Fujian province is obtained through
grey correlation analysis, and then three main influencing factors are obtained, namely

Year Real data
FDCGM(1,N) GM(1,N) DGM(1,N)

Fitting APE (%) Fitting APE (%) Fitting APE (%)

2005 24069.00 24069.00 0.00 24069.00 0.00 24069.00 0.00
2006 25760.00 30675.87 19.08 20491.44 20.45 30160.82 17.08
2007 30946.00 33332.43 7.71 42782.88 38.25 34948.59 12.93
2008 35593.00 37530.32 5.44 32569.68 8.49 40914.02 14.95
2009 38111.00 38849.72 1.94 �20409.11 153.55 43078.52 13.03
2010 41325.00 41735.30 0.99 �72633.17 275.76 46508.49 12.54
2011 45338.00 45085.77 0.56 �131536.77 390.12 51600.03 13.81
2012 47697.00 47705.36 0.02 �210393.26 541.10 57274.70 20.08
2013 50063.00 49447.65 1.23 �325222.87 749.63 66167.11 32.17
2014 54002.00 50853.86 5.83 �482056.20 992.66 77471.52 43.46
2015 54051.00 47116.76 12.83 �962511.82 1880.75 89805.59 66.15
2016 55056.00 45950.00 16.54 �1483889.66 2795.24 104767.59 90.29
2017 50056.00 47188.05 5.73 �2043942.04 4183.31 126557.57 152.83
2018 50774.00 49415.61 2.68 �3039098.03 6085.54 157853.43 210.89
2019 49220.00 51414.89 4.46 �5658615.41 11596.58 198566.41 303.43
MAPE(%) 2122.25 71.69
2020 50290.00 50813.97 1.04 �8051467.56 16110.08 256814.57 410.67
2021 52954.00 59494.88 12.35 �12530458.38 23762.91 337972.18 538.24
MAPE(%) 19936.49 474.45

Year Real data
DVCGM(1,N) BPNN LSTM

Fitting APE(%) Fitting APE(%) Fitting APE(%)

2005 24069.00 24069.00 0.00 27713.64 15.14 40860.31 69.76
2006 25760.00 22200.93 13.82 29163.72 13.21 38510.61 49.50
2007 30946.00 45838.99 48.13 33256.09 7.46 39740.87 28.42
2008 35593.00 45361.15 27.44 35690.49 0.27 40716.24 14.39
2009 38111.00 55502.68 45.63 38374.81 0.69 41472.66 8.82
2010 41325.00 57147.69 38.29 40777.12 1.33 42813.84 3.60
2011 45338.00 61507.75 35.66 43406.07 4.26 44634.28 1.55
2012 47697.00 74595.34 56.39 48446.28 1.57 46526.28 2.45
2013 50063.00 73482.43 46.78 51094.68 2.06 48528.15 3.07
2014 54002.00 84352.85 56.20 56204.62 4.08 50402.47 6.67
2015 54051.00 47996.13 11.20 44611.86 17.46 50791.54 6.03
2016 55056.00 61230.66 11.22 42131.81 23.47 50789.08 7.75
2017 50056.00 65221.31 30.30 35914.62 28.25 50490.43 0.87
2018 50774.00 58988.18 16.18 35697.13 29.69 50080.16 1.37
2019 49220.00 41848.41 14.98 52226.56 6.11 49286.40 0.13
MAPE(%) 32.30 10.34 13.63
2020 50290.00 46496.59 7.54 49623.49 1.33 48365.36 3.83
2021 52954.00 39175.33 26.02 43590.60 17.68 47917.65 9.51
MAPE(%) 16.78 9.50 6.67

Source(s): Table created by authors

Table 2.
Fitting and forecasting
results of six models to

Tianjin’s port cargo
throughput
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total import and export volume, GDP and water freight volume. Table 4 manifests the
required data.

FDCGM(1,N) model’s optimal order is �0.9396, obtained by GWO. According to the
modelling steps, the data in Table 4 are modelled, and the calculation formula of the
FDCGM(1,N) model can be obtained as follows:

bxð−0:9396Þ1 ðkÞ ¼ e−1:1345*ðk−1Þ * xð−0:9396Þ1 ð1Þ þ 1

1:1345
*
�
1� e−1:1345*ðk−1Þ

�
�
7:4598x

ð−0:9396Þ
2 ðkÞ þ 0:1488x

ð−0:9396Þ
3 ðkÞ þ 0:7167x

ð−0:9396Þ
4 ðkÞ � 778:0284d

ð−0:9396Þ
5 ðkÞ

�

Figure 2.
Fitting curves of five
models to Tianjin’s
port cargo throughput

Figure 3.
APE(%) of Tianjin’s
port cargo throughput
amongst five models

MAEM



2022 2023 2024 2025

Port cargo throughput (10000 tons) 64516.28 68172.36 72074.35 76234.88

Source(s): Table created by authors

Year
Port cargo throughput

(10000 tons)
Total import and export
volume (USD 100 million)

GDP (100
million yuan)

Water freight
volume (10000 tons) D

2005 19809.25 544.11 9210.00 6415.50 0
2006 23865.61 626.59 10841.00 7468.60 0
2007 23880.90 744.51 12130.00 9325.60 0
2008 27422.06 848.21 15193.00 10931.80 0
2009 30831.81 796.49 14272.00 12418.10 0
2010 33069.01 1087.80 16803.00 15002.50 0
2011 37695.95 1435.22 18871.00 17917.70 0
2012 41359.23 1559.38 21100.00 20190.70 0
2013 45911.19 1693.22 23162.00 22503.80 0
2014 49541.24 1774.08 25782.00 24942.10 0
2015 50652.09 1688.46 28419.00 26819.50 1
2016 51140.09 1568.19 31664.00 29609.40 1
2017 51995.49 1710.35 33453.00 33842.40 1
2018 56130.88 1875.76 36854.00 38687.80 1
2019 59483.99 1930.86 42263.00 42326.60 1
2020 62132.47 2033.17 45018.00 43608.60 1
2021 69190.28 2852.50 50224.00 48810.40 1

Source(s): Table created by authors

Table 3.
Tianjin’s port cargo

throughput predicted
by the FDCGM(1,N)

model from 2022
to 2025

Figure 4.
MAPE(%) of six

models to Tianjin’s
port cargo throughput

Table 4.
Observations of Fujian
province’s port cargo
throughput and the

related factors in
2005–2021
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Table 5 shows the raw data and sixmodels’ simulation and forecast results. Fujian province’s
port cargo throughput of achieved more than three times growth from 2005 to 2021. Figure 5
shows that the new model is not only closer to actual values in terms of simulation and
forecasting results but also very consistent with the actual situation in terms of change
trends, which all show an upward trend overall and can reflect the actual state of port
throughput in Fujian province. Especially for the in-sample prediction stage, the predicted
values of other models have a significant deviation from the true value.

Year Real data
FDCGM(1,N) GM(1,N) DGM(1,N)

Fitting APE(%) Fitting APE(%) Fitting APE(%)

2005 19809.25 19809.25 0.00 19809.25 0.00 19809.25 0.00
2006 23865.61 26309.45 10.24 19321.50 19.04 23143.58 3.03
2007 23880.90 29560.23 23.78 29117.78 21.93 25146.88 5.30
2008 27422.06 31762.80 15.83 34213.01 24.76 29705.88 8.33
2009 30831.81 32104.63 4.13 27472.86 10.89 28152.03 8.69
2010 33069.01 35783.11 8.21 33601.99 1.61 31917.44 3.48
2011 37695.95 39996.33 6.10 39281.88 4.21 37505.14 0.51
2012 41359.23 42382.29 2.47 42829.68 3.56 41939.52 1.40
2013 45911.19 44856.43 2.30 46087.66 0.38 45775.67 0.30
2014 49541.24 47151.69 4.82 49619.81 0.16 49354.31 0.38
2015 50652.09 47328.13 6.56 51379.51 1.44 51382.08 1.44
2016 51140.09 48629.83 4.91 52447.81 2.56 52286.24 2.24
2017 51995.49 52386.95 0.75 51794.85 0.39 52563.63 1.09
2018 56130.88 56902.79 1.38 54437.78 3.02 54430.19 3.03
2019 59483.99 60200.70 1.20 62314.38 4.76 59466.07 0.03
MAPE(%) 7.05 2.80
2020 62132.47 61977.45 0.25 68586.82 10.39 65107.76 4.79
2021 69190.28 71271.52 3.01 86089.33 24.42 79119.11 14.35
MAPE(%) 17.41 9.57

Year Real data
DVCGM(1,N) BPNN LSTM

Fitting APE(%) Fitting APE(%) Fitting APE(%)

2005 19809.25 19809.25 0.00 24863.60 25.52 40870.00 106.32
2006 23865.61 19180.86 19.63 25521.59 6.94 30766.25 28.91
2007 23880.90 29221.16 22.36 27081.11 13.40 28160.56 17.92
2008 27422.06 34453.96 25.64 28256.75 3.04 30734.86 12.08
2009 30831.81 27817.36 9.78 29134.12 5.51 34638.12 12.35
2010 33069.01 33806.58 2.23 33494.81 1.29 37534.54 13.50
2011 37695.95 39311.85 4.29 39021.02 3.52 40799.68 8.23
2012 41359.23 42915.81 3.76 41955.43 1.44 43458.64 5.08
2013 45911.19 46221.49 0.68 45083.91 1.80 46087.97 0.39
2014 49541.24 49887.45 0.70 47922.43 3.27 48717.44 1.66
2015 50652.09 50835.20 0.36 49129.09 3.01 50991.79 0.67
2016 51140.09 52307.97 2.28 50113.41 2.01 53065.70 3.77
2017 51995.49 51808.85 0.36 51992.74 0.01 54630.18 5.07
2018 56130.88 54663.14 2.61 54233.13 3.38 56350.72 0.39
2019 59483.99 62858.31 5.67 57019.61 4.14 57737.66 2.94
MAPE(%) 7.17 5.22 14.62
2020 62132.47 69172.23 11.33 57628.06 7.25 58461.78 5.91
2021 69190.28 86211.78 24.60 58242.12 15.82 60340.63 12.79
MAPE(%) 17.97 11.54 9.35

Source(s): Table created by authors

Table 5.
Fitting and forecasting
results of six models to
Fujian province’s port
cargo throughput
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Figure 6 exhibits that the APE of the FDCGM(1,N) model is within 5% except for a few years,
and the degree of fluctuation is the most stable among all the comparison models. It indicates
that new model has more durable and accurate performance and more robust adaptability
than the comparisonmodels. Meanwhile, Figure 7 shows that theMAPEs of the FDCGM(1,N)
model is 4.16%, a little bit higher than that of the DGM(1,N) model. The LSTMmodel has the
largest MAPEs of 14.62%. The FDCGM(1,N) model performs well with the smallest MAPEp
among the six models at 1.63%. The new model considering the fractional-order AGO can
overcome the limitations of other models in the simulation and forecasting process and has
better forecasting accuracy and stable performance. It can perform out-of-sample forecasting
of cargo throughput in Fujian province.

4.2.2 Forecast Fujian’s port cargo throughput in 2022–2025. A new model is used to
forecast Fujian province’s port cargo throughput in 2022–2025. From Table 6, in the next four
years, Fujian province’s port cargo throughput will continue to grow and reach 1,017,638,300

Figure 5.
Fitting curves of five

models to Fujian
province’s port cargo

throughput

Figure 6.
APE(%) of Tianjin’s

port cargo Fujian
province’s amongst six

models
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tons in 2025. The construction of Fujian FTZ provides an endogenous impetus for developing
ports. With a series of preferential policies brought by the FTZ, Fujian provincial ports have
been significantly strengthened, the disadvantages of “one bay and two ports” management
have been effectively solved, and the level of port intensification, scale and modernization have
been significantly improved. The free trade and convenient investment brought by Fujian FTZ
have accelerated port development and enhanced port enterprises’ competitiveness. In the
future, Fujian province will continue to promote port integration actively, clarify the scope of
port areas, functional positioning and development goals of each port, strengthen cross-strait
industrial docking and promote advantageous industrial cooperation.

4.3 Comprehensive contrastive analysis
Figures 8 and 9 show the growth rates of port cargo throughput from 2005 to 2025, and the
port cargo throughput prediction results from 2022 to 2025 for Tianjin and Fujian provinces.
From them, the effects of the FTZpolicy on port cargo throughput differ from region to region.

Tianjin’s port cargo throughput has shown a growth trend after the constitution of the
Tianjin FTZ, but the growth rate has slowed. It may be because Tianjin FTZ strives to
develop its transit transport business, which diverts part of the import and export cargo flow.
Meanwhile, the cargo throughput mainly comes from the Beijing-Tianjin-Hebei region. After
establishing the FTZ, Tianjin port faces more and more competition from the Bohai Seaport
group. The growth rate will be reduced as a result. Overall, the FTZ policy has brought stable
development to Tianjin’s ports. In 2022–2025, the cargo throughput of Tianjin ports will
continue to grow, and its growth rate will remain stable. It indicates that the Tianjin FTZ
policy will continue to fuel the development of Tianjin’s ports.

2022 2023 2024 2025

Port cargo throughput (10000 tons) 78720.28 85580.92 93231.36 101763.83

Source(s): Table created by authors

Figure 7.
MAPE(%) of six
models to Fujian
province’s port cargo
throughput

Table 6.
Fujian province’s port
cargo throughput
predicted by the
FDCGM(1,N) model
from 2022 to 2025
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Meanwhile, the Fujian FTZ policy has contributed significantly and continuously to the port
cargo throughput. With the preferential policies of the Fujian FTZ, easier market access has
attracted many enterprises to move in, driving import and export business. It has directly
caused the rapid growth of port cargo throughput in Fujian province, thus maintaining a
stable growth rate. The port cargo throughput continues its growth trend in 2022–2025,
reaching 1,017,638,300 tons in 2025. Its growth rate increases and then decreases, indicating
that Fujian needs to strengthen port infrastructure construction, improve port productivity
and realize the boosting effect of the FTZ on port development in the long term.

Figure 8.
The growth rate of port

cargo throughput of
Tianjin and Fujian
from 2006 to 2025

Figure 9.
Port cargo throughput
of Tianjin and Fujian

from 2022 to 2025
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5. Conclusions
The establishment of the FTZs has advanced port production and development. As an
essential indicator of port production capacity and operation, accurate prediction of port
cargo throughput is vital for policymakers in formulating port development plans. This
paper forecasts and analyses the port cargo throughput under the FTZ policy by
constructing a new model and obtains the following conclusions:

(1) By introducing the fractional-order AGO and considering the policy effect, this paper
proposes a new greymultivariate forecastingmodel, which enhances the adaptability
and forecasting performance of the newmodel and compensates for the shortcomings
of the traditional multivariate model. Further, the GWO algorithm is employed to
track the optimal introduced fractional-order AGO, which weakens the randomness
of the original data series and improves the ability of the FDCGM(1,N) model to mine
the information of the original data series.

(2) By simulating and forecasting port cargo throughput from 2005 to 2021 for Tianjin
where FTZs are located, the results show that the new model curve can fit the raw
data curve well. Compared with five comparison models, GM(1,N), DGM(1,N),
DVCGM(1,N), BPNN and LSTM, the new model has good performance with MAPE
values of 6.07% in the simulation phase and 6.70% in the forecasting phase,
respectively. It indicates that the FDCGM(1,N) model is a practical tool for forecasting
port cargo throughput. It can be used for out-of-sample forecasting and port cargo
throughput of Tianjin will reach 762,348,800 tons in 2025. Meanwhile, comparative
analysis reveals that Tianjin’s port cargo throughput has shown a slow growth trend
under the influence of FTA policy.

(3) The port cargo throughput of Fujian province where FTZs are located is simulated
from 2005 to 2021, and the results show that the newmodel curve can better reflect the
changing trend of the original data. Compared with the five comparison models
GM(1,N), DGM(1,N), DVCGM(1,N), BPNN and LSTM, the MAPE value of the new
model is 4.16% in the simulation stage and 1.63% in the prediction stage. It shows
that the FDCGM(1,N) model can be used to predict the port cargo throughput in
Fujian province out of sample. Through the forecast, it is found that the cargo
throughput of ports in Fujian province will reach 1,017,638,300 tons in 2025. In
addition, the results of the comparative analysis show that, thanks to the FTZ policy,
Fujian’s port cargo throughput has exhibited rapid growth.

The grey multivariate model proposed in this paper, which considers the effects of both
policy and fractional order, has better simulation and forecasting performance than the
traditional grey forecasting and machine learning models. In the future, other intelligent
optimization algorithms can be considered to improve the new model’s performance. The
autoregressive time-lag term can be also introduced to improves the new model’s
performance. In addition, the FDCGM(1,N) model can also be used to predict the port
cargo throughput of other provinces (cities) implementing FTZ policy, providing a reliable
basis for decision-makers to make port development plans.
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