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Abstract

Purpose – Online gaming has emerged as a popular activity providing a social outlet for millions.

However, implications of online game networks for mental health remain disputed. Concepts of bridging

social capital and bonding social capital may help characterize protective factors within social networks.

This study aims to examine the associations between social capital derived from online versus in-person

networks andmental health indicators amonggamers.

Design/methodology/approach – Online gamers (n¼ 301) completed an online survey assessing their

social networks (both in-person and through online gaming) and mental health indicators (depressive

symptoms, anxiety, social isolation, perceived social support). Social network analysis was used to

analyze bridging (network size, effective size, heterogeneity, weak ties) and bonding (closeness,

frequent contact, confiding, connection quality) social capital. Separate linear regression models

evaluated associations between bridging and bonding social capital for both online and in-person

networks and depressive symptoms, anxiety, social support and social isolation.

Findings – In-person network characteristics showed the strongest associations with mental health

outcomes. Greater average closeness and frequent confiding in the in-person network predicted lower

isolation and fewer depressive symptoms. More diverse relationship types also correlated with lower

depression. For online networks, closeness and confiding ties associated only with less isolation and

greater support, not depressive symptoms, or anxiety.

Originality/value – While online gaming networks provide some degree of social support, in-person

social capital exhibited stronger associations with mental health. This reinforces the importance of face-

to-face relationships for emotional well-being. Findings suggest helping gamers cultivate close bonds

offline. However, online connections still matter and should not be discounted.
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Introduction

Online gaming has emerged as a popular activity that can foster social connections and

community engagement for millions of users (Carras et al., 2018). Online gaming involves

playing video games with other people over the internet, allowing gamers to interact and

build virtual communities (Kowert et al., 2014b). Popular online game genres include

multiplayer battle arenas, massively multiplayer online role-playing games (MMORPGs) and

shooters; however, online games range from casual smartphone apps to immersive virtual

worlds. Some industry estimates place global revenue from online gaming to reach US

$175bn in 2021, reflecting massive growth and participation (Wijman, 2021). Playing online

has become a primary pastime and social outlet for millennials and Gen Z generations

(typically those born between 1981 and 2012; Serbanescu, 2022, Nigam, 2022, Bassiouni

and Hackley, 2014). However, consequences of online gaming for social relationships and

mental health remain disputed. Some studies suggest that online gaming can provide
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opportunities for social connection, support and a sense of community, which may

positively influence mental health (Trepte et al., 2012, Lu et al., 2022). On the other hand,

excessive gaming has been associated with negative outcomes such as social isolation,

decreased life satisfaction and increased risk of addiction-like behaviors (Lemmens et al.,

2011, Männikkö et al., 2017).

Mental health encompasses emotional, psychological and social well-being. It includes not

only the absence of psychopathology but also the presence of positive functioning and

psychological thriving (Keyes, 2005). Key indicators include anxiety, depression, social

isolation and perceived social support. Anxiety involves excessive apprehension, worry and

activation of the fight-or-flight response, which can become pathological at high levels

(Porter et al., 2017). Depression is characterized by persistent low mood, loss of interest

and other cognitive and somatic disturbances that impair functioning. However,

researchers have called for an expanded understanding of mental health considering both

the perspective of dysfunction and the perspective of how well a person is doing and

thriving psychologically (Keyes, 2005, Hides et al., 2020). These positive aspects of mental

health reflect an individual’s ability to cope with daily stressors, work productively,

contribute to their community and realize their full potential (Keyes, 2005, Hides et al.,

2020). A comprehensive understanding of mental health should encompass both the

absence of psychopathology and the presence of positive psychological functioning, such

as help seeking or positive coping (Keyes, 2005, Hides et al., 2020). This balanced

perspective is crucial when examining the relationship between social capital and mental

health outcomes in the context of online communication and gaming communities (Meier

and Reinecke, 2020).

Multiplayer online games provide virtual spaces for regular social interaction, which may

have implications for players’ well-being and mental health (Prochnow et al., 2020b,

Prochnow et al., 2020c, Prochnow et al., 2023, Prochnow et al., 2021a). In particular, the

concepts of bridging social capital and bonding social capital within gaming communities

may be linked to mental health outcomes. Bridging and bonding social capital emerge from

distinct network patterns (Szreter and Woolcock, 2004). Bonding social capital refers to the

close ties between similar or homogenous individuals, which provide emotional support and

access to scarce resources (Szreter and Woolcock, 2004). These strong, redundant ties are

characterized by high levels of trust, intimacy and reciprocal obligation (Geys and

Murdoch, 2010). Bonding capital functions as a “sociological superglue” that reinforces

exclusive group identity and homogeneous norms (Claridge, 2018). By contrast, bridging

social capital involves loose connections between dissimilar individuals from different

backgrounds (Szreter and Woolcock, 2004, Claridge, 2018). Bridging capital provides

linkages to external assets and information diffusion through weak ties between diverse

groups (Claridge, 2018, Granovetter, 1973). It enables cooperation between distinct social

clusters and expanded access to new perspectives and ideas. This social “sociological

WD-40” lubricates integration in heterogeneous societies (Claridge, 2018). Both forms of

capital have implications for well-being that likely depend on context (Claridge, 2018). While

research has examined social capital across contexts like neighborhoods and workplaces

(Eagle et al., 2010, Han and Chung, 2022), less is known about its operation within online

gaming communities specifically from a network perspective. These virtual spaces allow

forming diverse ties unconstrained by geography. Clarifying bridging and bonding social

capital dynamics can inform promoting positive gaming experiences.

Prior work shows the importance of social relationships for wellbeing more broadly. For

instance, social isolation and loneliness elevate risks for adverse mental and physical health

outcomes (Holt-Lunstad et al., 2015). Social isolation refers to a deficiency in quality

relationships and objective lack of social connectedness (Holt-Lunstad et al., 2015). By

contrast, social integration and support are linked to better mental health (Umberson and

Karas Montez, 2010). These mechanisms likely involve both structural (network
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connections) and functional (emotional support) social resources (Holt-Lunstad et al.,

2017).

Social network analysis (SNA) comprises theories and methods for understanding social

structures based on patterns of relationships between individuals or groups (Valente, 2010).

It enables empirically mapping and analyzing networks by quantifying properties like

density, centrality, subgroups and position (Valente, 2010). Applying SNA techniques can

elucidate the configuration of bridging and bonding social capital within a community (Perry

et al., 2022). Unlike traditional social capital scales that primarily focus on an individual’s

perception of their social resources, SNA allows for a more comprehensive and objective

examination of the structural and relational aspects of social capital within a network (Perry

et al., 2022). By mapping and quantifying the actual connections and patterns of

relationships among individuals, SNA provides a more advanced and nuanced

understanding of how social capital is distributed and operates within a given context (Perry

et al., 2022). Moreover, SNA has been increasingly applied to mental health research,

particularly through the network episode model, which posits that individuals’ health and

illness experiences are shaped by their social networks and the dynamic interactions within

these networks over time (Perry and Pescosolido, 2015).

This cross-sectional study uses SNA to examine the distribution of bridging and bonding

social capital among online gamers. It investigates how these network patterns relate to

mental health indicators, including anxiety, social isolation, depression and perceived social

support. Specifically, this study aims to:

� characterize the social network structure and distribution of bridging and bonding

social capital among online gamers; and

� examine associations between social network characteristics and mental health

indicators.

Clarifying dynamics of social connections, social capital and mental health in the context of

online gaming can inform promotion of healthy gaming and communities. Examining both

online and in-person networks will reveal their relative implications.

Methods

Participants and procedure

The study recruited online gamers (n ¼ 301) from various gaming platforms and

communities using CloudResearch Connect. CloudResearch Connect is a specific survey

tool similar to that of MTurk. Eligibility criteria will include being at least 18 years old,

currently engaging in online gaming activities and being able to provide informed consent.

Participants completed a 20–30min online survey assessing their social networks, social

capital, mental health indicators and covariates. Once completed, a quality check was

performed. Participants who passed three of four quality checks were compensated US$10

for their time. All procedures were approved by the referent Institutional Review Board, and

participants were required to view an informed consent page prior to participation in the

study. All research was conducted in accordance with the Declaration of Helsinki.

Measures

Depressive symptoms. The eight-item Patient Health Questionnaire (PHQ-8) was used to

measure depressive symptoms (Kroenke et al., 2001). Using this scale, participants were

asked the frequency with which they had been bothered with certain problems over the

past two weeks ranging from “not at all,” “several days,” “more than half the days,” to

“nearly every day.” Responses are then scored from 0 to 3 and subsequently summed to

create a total scale score. Example items include, “Little interest or pleasure in doing
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things,” “Feeling down, depressed, or hopeless” and “Feeling bad about yourself – or that

you are a failure or have let yourself or family down.” While results from the questionnaire

should be verified by a clinician, two meta-analyses concluded this scale to have

acceptable diagnostic properties for detecting depressive episodes (Manea et al., 2012,

Manea et al., 2015). For this specific study, depressive symptoms will be presented as a

continuous variable and not used for any diagnostic calculations. Cronbach’s a values for

the PHQ-8 have been reported at 0.89 (Shin et al., 2019) and was 0.76 in the present

sample.

Symptoms of anxiety. The State-Trait Anxiety Inventory (STAI) is a self-report questionnaire

designed to assess anxiety levels (Spielberger, 1970, Spielberger et al., 1973). Trait

(general predisposition to experience anxiety across various situations, irrespective of

specific events) subscale was used consisting of 20 items, which are summed to provide a

scale score. The inventory uses a three-point Likert scale and can provide valuable insights

into anxiety symptoms, helping professionals assess and monitor anxiety levels over time.

The STAI has been widely used in research and clinical settings to evaluate anxiety

symptoms, assess treatment outcomes and identify individuals at risk for anxiety disorders

and has been suggested to be valid and reliable (Seligman et al., 2004, Metzger, 1976).

Social isolation. The shortened UCLA Loneliness Scale includes three items (Hughes et al.,

2004) such as, “How often do you feel alone” and “How often do you feel that there is no

one you can turn to.” Items are scored on a three-point Likert-type scale ranging from 1

(hardly ever) to 3 (often). Items are averaged, with higher scores indicating higher social

isolation. The UCLA-3 has good reliability with Cronbach’s alpha value of 0.84 (Hughes

et al., 2004).

Social support. An abbreviated version of the Multidimensional Scale of Perceived Social

Support (MSPSS) was used to measure social support (Zimet et al., 1990). The MSPSS is a

widely used instrument that assesses perceived social connections and support from

various sources, including family, friends and significant others. It measures the individual’s

subjective perception of the availability of support, the level of satisfaction with the support

received and the adequacy of support in different domains of their life. The MSPSS consists

of 12 items rated on a four-point Likert scale, ranging from “strongly disagree” to “strongly

agree.” The scale captures dimensions of social connectedness, such as emotional

support, tangible support and social companionship and suggested to have good internal

reliability and factorial validity (Zimet et al., 1990, Dahlem et al., 1991). This scale was

adapted to include subscales for family, friends, significant others and online support,

which were summed to develop a scale score.

Social networks. Participants (also termed “egos” in SNA) were asked to list up to five

people they interacted with most through online gaming over the past 30days and up to five

people they interacted with most in-person over the past 30days (Prochnow et al., 2020a,

Prochnow et al., 2021b, Prochnow et al., 2022b, Prochnow et al., 2020d, Prochnow et al.,

2022a, Reich et al., 2012). Participants were informed that people could be used in both

networks if they fit the description. Networks were limited to five to capture the most salient

relationships as suggested in previous work (adams, 2019). For each person/account

(termed “alter” in SNA) listed, participants were then asked questions to better understand

their relationship with each specific alter as well as if the alters they listed know each other.

For each alter, participants identified their relationship to the alter, frequency of contact,

frequency of confiding in the alter about a difficult issue, how they met the alter, how good

the alter makes them feel about themselves and how close they feel to the alter. This

method of collecting networks has been used previously (Prochnow et al., 2020a, Prochnow

et al., 2021b, Prochnow et al., 2022b, Prochnow et al., 2020d, Prochnow et al., 2022a, Reich

et al., 2012). From these questions, network composition variables related to social bridging

and social bonding measures were generated for both in-person and online networks (Perry

et al., 2022).
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Measures operationalizing social bridging include network size, effective size, heterogeneity

and presence of weak ties. These measures capture the extent to which participants have

extensive wide-reaching networks. Network size is the number of alters reported in the

participant’s network. It should be noted network size was limited to five; however,

participants reporting more alters is still hypothesized to have a role in bridging networks.

Effective size refers to the number of non-overlapping groups with which a person interacts;

it is calculated as the number of alters minus the mean number of ties that each alter has to

all other alters (Borgatti, 1997). Higher values indicate presence of structural holes (Burt,

1995). Heterogeneity refers to the number of unique relationship types in a person’s network

(e.g. friend, family member, person they do not know well) and where they met (e.g. online,

in-person). We count the number of unique relationship types in each respondent’s network

and divide by network size to avoid conflating diversity with overall size of the network (Peng

et al., 2021). Presence of weak ties in the network will be assessed using frequency of alters

reported at the minimum value of the closeness of ties. This measure follows the tradition of

using emotional closeness to operationalize weak ties between individuals (Sandstrom and

Dunn, 2014).

Measures operationalizing social bonding include mean tie strength, proportion active

engagement, proportion frequent confiding and mean quality of connection. These

measures capture the extent respondents have close personal bonding networks. Mean

tie strength refers to the average closeness of the tie between ego and each of the alters

(range: 1–5). Proportion active engagement is the proportion of alters in the network with

whom ego frequently interacts (seeing or talking to the alter at least 3–5 days per week).

Proportion frequent confiding is the proportion of alters in the network in whom ego frequently

confides (speaking to the alter about difficult issues alter at least 3–5 days per week).

While active engagement and confiding frequencies may be similar, the latter implies a

degree of intimacy absent from simple contact measures; we use both to capture distinct

phenomena. Mean quality of connection refers to the average of the participant’s

response to “how good does this person make you feel about yourself” for each alter

(range: 1–5).

Data analysis

First, descriptives are provided to shed light on what online gaming networks look like in this

context. Within this step, network density was calculated to describe the networks. Network

density was calculated by dividing the sum of existing ties by the total number of possible

ties within each participant’s online and offline networks separately. Next, network variables

created in Step 1 will be used as independent variables with model covariates in separate

multiple linear regression models for each dependent variable (social support, social

isolation, anxiety and depressive symptoms). In this manner, we can detect significant

associations between specific network composition variables and social support, social

isolation and mental health outcomes while controlling for other effects. There was less than

5% missing data on any of the variables included in the analyses with no identifiable pattern

to the missingness. Multiple imputation was used to simulate the missing data using the

mice package in R (Van Buuren and Groothuis-Oudshoorn, 2011). To control for the

increased likelihood of making a Type I error when conducting multiple hypothesis tests, a

Bonferroni correction was applied, dividing the desired familywise error rate (a ¼ 0.05) by

the number of tests (n ¼ 4), resulting in a more stringent significance level (a’ ¼ 0.0125) for

each individual test.

Results

The sample consisted of 301 online gamers with a mean age of 34.72years (SD ¼ 8.78).

The majority of participants were men (67.4%) and white or Caucasian (75.7%), with 15.0%

identifying as black or African American. Most respondents had at least some college
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education, with 38.5% holding a bachelor’s degree. Over half worked full-time (65.8%) with

a modal income between US$50,000 and US$74,999 (23.3%). Just over one-third were

married (33.9%), while 38.2% reported being single. On average, participants played video

games for 22.79 h per week (SD ¼ 11.99). The most frequently played genres were role-

playing (35.9%), shooters (20.6%) and multiplayer online battle arenas (11.6%). Mean levels

of trait anxiety (M ¼ 22.18, SD ¼ 4.44), depressive symptoms (M ¼ 6.83, SD ¼ 5.98) and

social isolation (M ¼ 5.17, SD ¼ 2.13) were in the moderate ranges. Participants reported

an average social support score of 48.33 (SD ¼ 10.49), indicating moderately high

perceived support. See Table 1 for more information.

On average, participants listed 4.05 alters (SD ¼ 1.08) in their online gaming networks,

with a mean online network density of 0.52 (SD ¼ 0.37). The online networks showed

moderate levels of relationship heterogeneity (M ¼ 0.43, SD ¼ 0.20) and meeting

heterogeneity (M ¼ 0.40, SD ¼ 0.17). Around 45% of online networks contained weak

ties. Participants rated their average closeness to online alters as 3.24 (SD ¼ 0.97) on a

five-point scale. They interacted frequently (3–5 days per week) with about 55% of

online alters (SD ¼ 0.34) and confided frequently in around 26% (SD ¼ 0.31). The mean

rating for how good online alters make participants feel was 4.04 (SD ¼ 0.67) on a five-

point scale. Effective size, measuring lack of network constraint, averaged 1.89 (SD ¼
1.52).

On average, participants listed four in-person alters (SD ¼ 1.14) in their networks, with a

mean in-person network density of 0.70 (SD ¼ 0.34). The in-person networks showed

moderate heterogeneity in relationships (M ¼ 0.43, SD ¼ 0.20) but lower meeting

heterogeneity (M ¼ 0.30, SD ¼ 0.14). Only around 21% of in-person networks contained

weak ties. Participants rated their average closeness to in-person alters as 3.84 (SD ¼ 0.91)

on a five-point scale. They interacted frequently (3–5days per week) with about 63% of in-

person alters (SD ¼ 0.33) and confided frequently in around 37% (SD ¼ 0.34). The mean

rating for how good in-person alters make participants feel was 4.12 (SD ¼ 0.70) on a five-

point scale. Effective size averaged 1.17 (SD ¼ 1.31).

Social isolation

A linear regression examined associations between social network factors and social

isolation. The model was significant (F(25,275) ¼ 3.81, p < 0.001) and accounted for

26.2% of the variance in social isolation. In the online network, higher average closeness

to alters predicted lower social isolation (b ¼ �0.25, p ¼ 0.01). For the in-person network,

greater average closeness (b ¼ �0.63, p < 0.01) and more frequent confiding (b ¼
�0.18, p ¼ 0.011) were associated with lower isolation. Table 2 provides full regression

results.

Social support

A linear regression examined social network factors related to social support. The overall

model was significant (F(25, 275) ¼ 8.61, p < 0.001) and explained 44.5% of the variance in

social support. Within online networks, participants who reported more of their alters made

them feel good about themselves (b ¼ 3.42, p < 0.01) reported greater feelings of support.

Likewise, for in-person networks, higher average good feeling from alters (b ¼ 3.59, p <

0.01) and percent often confide (b ¼ 3.82, p < 0.01) were associated with higher support.

Table 2 provides full regression results. It should be noted that participants reporting more

frequent confiding in alters (b ¼ 1.48, p ¼ 0.04) also reported greater feelings of support;

however, based on multiple testing significance correction this result should be interpreted

with caution.
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Symptoms of anxiety

A linear regression analysis found that the model for social network variables predicting trait

anxiety was significant (F(25, 275) ¼ 1.93, p ¼ 0.006), accounting for 15.3% of variance.

Online network size (b ¼ 0.99, p ¼ 0.01) was associated with higher anxiety symptoms.

Meanwhile in-person often interaction (b ¼ �1.93, p ¼ 0.04) was associated with lower

anxiety scores, and the online bridging social capital variable of relationship heterogeneity

(b ¼ 3.68, p ¼ 0.02) was associated with higher anxiety symptoms; however, these

Table 1 Sample demographics, social capital and mental health measures

Variable n % Mean SD

Gender

Female 97 32.2

Non-binary 1 0.3

Male 203 67.4

Marital status

Single 115 38.2

Dating one or more people 79 26.3

Married/partnered 102 33.9

Divorced/widowed 5 1.6

Race

American Indian or Alaska native 3 1.0

Asian 20 6.6

Black or African American 45 15.0

White 228 75.7

Other 5 1.7

Ethnicity

Hispanic 48 15.9

Non-Hispanic 253 84.1

Household income

Less than $24,999 52 17.3

$25,000–$49,999 64 21.3

$50,000–$74,999 70 23.3

$75,000–$99,999 44 14.6

$100,000–$1,24,999 29 9.6

$1,25,000–$1,49,999 17 5.6

More than $1,50,000 24 8.0

Highest educational level

High school diploma, GED 63 20.9

Some college or technical training 63 20.9

Associates degree 32 10.7

Bachelor’s degree 116 38.5

Masters or doctoral degree 27 9.0

Employment

Unemployed 36 12.0

Student 10 3.3

Employed 198 65.8

Self-employed 42 14.0

Retired 3 1.0

Age 34.72 8.78

Weekly hours spent playing online games 22.79 11.99

Social isolation 5.17 2.13

Social support 48.33 10.49

Trait anxiety 22.18 4.44

Depressive symptoms 16.83 5.98

Source: Table by authors
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variables were not deemed statistically significant after correction. Table 2 provides full

regression results.

Depressive symptoms

The regression model examining links between social networks and depressive symptoms

was significant (F(25, 275) ¼ 3.16, p < 0.001), explaining 22.8% of the variance in

depressive symptoms. For the in-person network, more frequent in-person interaction (b ¼
�3.08, p ¼ 0.01) was associated with lower symptoms. Further, reporting that alters made

participants feel better about themselves (b ¼ �2.19, p ¼ 0.01) was also associated with

fewer depressive symptoms. Average closeness with in-person network members (b ¼
�1.29, p ¼ 0.04) was associated with lower symptoms; however, it was deemed not

significant after correction. Table 2 provides full regression results.

Discussion

This study aimed to characterize the social networks and capital distributions among online

gamers and examine associations with mental health indicators. Bridging and bonding

social capital were assessed for both online and in-person networks using SNA. By using

SNA, this study moves beyond individual perceptions of social capital and provides a more

Table 2 Linear regression results for social support, social isolation, anxiety and depressive symptoms

Effect

Social isolation

R2¼ 0.26

Social support

R2 ¼ 0.45

Anxiety

R2¼ 0.15

Depressive symptoms

R2 ¼ 0.23

Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Intrapersonal variables

Age �0.01 0.01 0.21 �0.01 0.05 0.75 �0.01 0.03 0.80 �0.03 0.03 0.36

Gender (referent female) 0.16 0.12 0.21 �0.99 0.54 0.06 0.38 0.29 0.18 0.67 0.36 0.06

Educational attainment �0.07 0.06 0.28 0.51 0.29 0.07 �0.21 0.15 0.16 �0.23 0.19 0.24

Income �0.01 0.07 0.92 0.32 0.30 0.28 �0.16 0.16 0.31 �0.24 0.20 0.23

Hours spent online gaming 0.01 0.01 0.29 �0.01 0.04 0.74 �0.01 0.02 0.89 0.02 0.02 0.34

Online bonding social capital

Average closeness �0.25 0.10 0.01�� 0.92 0.87 0.29 �0.29 0.46 0.52 0.13 0.59 0.82

Percent often interaction �0.22 0.41 0.59 �1.30 1.77 0.46 0.56 0.94 0.54 1.52 1.19 0.20

Percent often confide �0.41 0.51 0.41 1.48 0.71 0.04� �2.13 1.15 0.06 �2.62 1.46 0.07

Average feeling good �0.45 0.29 0.12 3.42 1.26 <0.01�� 0.07 0.67 0.91 0.09 0.85 0.91

Online bridging social capital

Relationship heterogeneity 1.09 0.71 0.12 �1.53 3.03 0.61 3.68 1.61 0.02� 3.48 2.04 0.10

Meeting heterogeneity �0.15 0.90 0.86 �1.57 3.84 0.68 0.50 2.04 0.80 0.12 2.60 0.96

Weak tie presence �0.04 0.17 0.79 �0.47 0.72 0.51 �0.34 0.38 0.37 0.24 0.49 0.61

Effective size 0.07 0.08 0.40 �0.36 0.35 0.29 0.04 0.18 0.83 �0.04 0.23 0.86

Network size 0.07 0.16 0.66 0.26 0.71 0.71 0.99 0.37 0.01�� 0.90 0.48 0.06

In-person bonding social capital

Average closeness �0.63 0.22 <0.01�� 0.64 0.96 0.50 �0.58 0.51 0.25 �1.29 0.65 0.04�

Percent often interaction �0.22 0.41 0.60 0.67 1.77 0.70 �1.93 0.94 0.04� �3.08 1.20 0.01��

Percent often confide �0.18 0.08 0.01�� 3.82 1.12 <0.01�� 0.79 1.13 0.48 2.18 1.43 0.13

Average feeling good �0.32 0.30 0.28 3.59 1.27 <0.01�� �0.99 0.68 0.14 �2.19 0.86 0.01��

In-person bridging social capital

Relationship heterogeneity �0.35 0.63 0.57 �0.61 2.67 0.82 �0.03 1.42 0.98 �1.66 1.80 0.35

Meeting heterogeneity 0.11 0.89 0.89 1.62 3.79 0.66 �2.15 2.02 0.28 1.84 2.56 0.47

Weak tie presence �0.31 0.24 0.20 �0.22 1.05 0.83 �0.39 0.56 0.48 �1.02 0.71 0.14

Effective size 0.01 0.09 0.97 �0.12 0.41 0.75 0.03 0.22 0.88 0.08 0.28 0.75

Network size 0.087 0.125 0.48 0.66 0.52 0.20 �0.18 0.28 0.52 0.18 0.35 0.60

Notes: �Indicates statistically significant at p< 0.05; �� indicates statistically significant at the corrected p< 0.0125

Source: Table by authors
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comprehensive understanding of the structural and relational aspects of social capital

within online gaming communities, addressing a gap in the literature. Similar to past

research within a gaming community (Prochnow et al., 2021a, Prochnow et al., 2020b,

Prochnow et al., 2020c, Prochnow et al., 2023), results indicate that while online social

connections play a role in feelings of support and mental health, social capital from in-

person sources proved to be more beneficial for participants in this sample.

Social bonding

The findings for social bonding align with prior work emphasizing the mental health benefits of

emotionally close relationships that provide intimacy and support (Holt-Lunstad et al., 2017,

Holt-Lunstad et al., 2015, Sandstrom and Dunn, 2014). Greater average closeness and more

frequent confiding ties in the in-person network were linked to lower isolation, greater support,

lower anxiety and fewer depressive symptoms. This reinforces the importance of strong ties

that engender trust, self-disclosure and attachment for well-being outcomes (Lakey and

Orehek, 2011, Sandstrom and Dunn, 2014). Such emotionally close relationships are thought

to influence mental health through mechanisms like provision of social support during times of

stress, having a reliable confidant and meeting needs for belonging and meaning (Peng et al.,

2021, Perry et al., 2022, Pescosolido, 2021). The current study extends this understanding by

demonstrating the specific network characteristics, such as average closeness and frequency

of confiding ties, that are associated with mental health outcomes in the context of online

gamers’ in-person social circles. The current results corroborate these connections in the

context of online gamers’ in-person social circles.

Social bridging

In line with research on the value of network diversity (Eagle et al., 2010, McCarty et al.,

2019), higher relationship heterogeneity in the in-person network also predicted fewer

depressive symptoms. This suggests that access to varied social circles can be protective,

consistent with the concepts of bridging capital (Lee et al., 2018). Bridging ties,

characterized by weak connections between diverse individuals, have been extensively

studied in relation to mental health and well-being. These ties are thought to provide

informational support, expose individuals to new perspectives and link them to external

assets that can promote well-being, such as job opportunities or creativity (Lee et al., 2018,

Granovetter, 1973). In the context of mental health, bridging ties have been found to play a

crucial role in recovery from severe mental illness (Salehi et al., 2019). Moreover, the benefits

of online bridging ties for mental health have been recognized for decades, with research

highlighting the positive effects of network heterogeneity on social tolerance within gaming

communities (Kobayashi, 2010). The current findings align with this existing body of

research, suggesting that the protective effects of bridging capital measured through SNA

also extend to depressive symptoms in the context of online gaming. The convergence of

our results with previous studies that used different methodologies lends credence to the

validity of using SNA to measure social capital and its relationship to mental health outcomes

in online contexts. However, given the complex nature of social capital and mental health,

further investigation is warranted to deepen our understanding of the specific mechanisms

through which bridging ties influence depressive symptoms in online gaming communities.

Online network results

For online gaming networks, higher closeness and more frequent confiding were

associated with lower isolation and greater support, but not anxiety or depression. This

indicates online relationships may provide some degree of social support but do not

substitute for in-person ties regarding mental health symptomology. This aligns with models

arguing online and offline interactions uniquely contribute to well-being rather than
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displacing one another (Valkenburg and Peter, 2007). Prior research similarly found online

friendships enhance but do not replace offline ties (Domahidi et al., 2018). It may be that

while emotional support transfers effectively online, other benefits of in-person bonding like

physical touch and oxytocin release remain important for mood and anxiety (Holt-Lunstad

et al., 2017, Holt-Lunstad et al., 2015, Jaremka et al., 2013). The present study adds to this

literature by demonstrating that specific online network characteristics, such as closeness

and frequency of confiding, are associated with reduced isolation and increased support,

but not with anxiety or depression. The current results underscore key distinctions between

online versus in-person relationships regarding mental health benefits, suggesting that

interventions aimed at promoting mental health among gamers should prioritize fostering in-

person connections while also supporting healthy online interactions.

In-person network results

In contrast to online networks, in-person social network characteristics showed robust

associations across all mental health outcomes. This highlights that face-to-face

relationships remain most relevant for symptomology, though online connections still matter.

Evolutionary psychology perspectives contend that in-person interaction has inherently

greater impact due to its prominence in human history (Kanai et al., 2012). Related

neuroscience research also demonstrates specific biomarkers like increased oxytocin that

accompany in-person contact (Holt-Lunstad et al., 2017, Holt-Lunstad et al., 2015, Jaremka

et al., 2013). Considering these biological and evolutionary factors, it is unsurprising that in-

person relationships exhibited stronger ties to mental health. However, online relationships

should not be discounted, as they still offered some degree of perceived support.

Implications

Future research directions include longitudinal and experimental studies to establish

causality and directionality of effects between social capital and mental health over time.

Analyses distinguishing structural versus functional network properties would also prove

informative, as they may differentially influence mental health outcomes (Berkman et al.,

2000). Further research could explore moderators like game genre that may influence the

extent of mental health benefits derived from the online community, as different game types

foster distinct social interactions and norms (Domahidi et al., 2018). In addition, direct

comparison of online versus offline relationships using dyadic data would clarify relative

impacts and provide insights into the interplay between virtual and real-world connections

(Snodgrass et al., 2011).

The current findings suggest implications for promoting healthy gaming experiences.

Gamers may benefit from cultivating close bonds and diverse ties in their in-person circles,

as these connections demonstrated stronger associations with mental health outcomes.

However, online connections still matter and should not be discounted. Interventions could

focus on supporting healthy online community engagement while encouraging gamers to

maintain and develop offline relationships. For example, gaming platforms could

incorporate features that facilitate the formation of diverse and supportive online

communities, such as matchmaking based on shared interests or promoting positive social

norms (Seabrook et al., 2016). At the same time, gamers could be encouraged to engage in

offline activities and social interactions to foster in-person connections. Mental health

professionals working with gamers could assess their online and offline social networks and

provide guidance on building and maintaining a balanced social support system. Outright

discouraging online play may backfire (Kowert et al., 2014a); instead, a nuanced approach

that recognizes the potential benefits and risks of online gaming is needed. Multi-faceted

interventions could include active coaching to foster in-person social skills alongside

gaming, tailored to individual risk factors and gaming motivations (Kuss and Griffiths, 2012).
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Limitations

The cross-sectional design prevents causal conclusions. The use of self-report measures

and egocentric network data could contribute to bias. While the use of clickworkers

(individuals who participate in online surveys and panels as a primary source of income)

allows for efficient data collection from a diverse sample, it is important to acknowledge

potential limitations such as self-selection bias, data quality concerns and the ethical

considerations of fair compensation and informed consent (Chandler and Shapiro, 2016).

Another limitation is that the study did not assess the potential overlap between participants’

online and offline networks, which may have influenced the observed associations between

social capital and mental health outcomes, as individuals who interact with the same people

both online and offline may have different experiences compared to those with distinct

online and offline social circles (Domahidi, 2018). This overlap between online and in-

person worlds is an area for future research in understanding the impact of our highly

connected worlds. In addition, imputed data was used in this study as the rate of missing

data was less than 5% with no discernable pattern; however, it is possible this simulated

data may have biased results.

Conclusions

This work provides initial evidence that social capital available through online gaming

interacts with mental health, though not to the same extent as in-person capital. Results can

help inform promotion of healthy gaming experiences. Findings suggest online and offline

social connections have complementary effects, arguing for a nuanced approach in

research and practice.
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Männikkö, N., Ruotsalainen, H., Miettunen, J., Pontes, H.M. and Kääriäinen, M. (2017), “Problematic
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