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Abstract

Purpose –Paley’s andHardy’s inequality are proved on aHardy-type space for the Fourier–Dunkl expansions
based on a complete orthonormal system of Dunkl kernels generalizing the classical exponential system
defining the classical Fourier series.
Design/methodology/approach – Although the difficulties related to the Dunkl settings, the techniques
used byK. Sato were still efficient in this case to establish the inequalitieswhich have expected similarities with
the classical case, and Hardy and Paley theorems for the Fourier–Bessel expansions due to the fact that the
Bessel transform is the even part of the Dunkl transform.
Findings – Paley’s inequality and Hardy’s inequality are proved on a Hardy-type space for the Fourier–Dunkl
expansions.
Research limitations/implications – This work is a participation in extending the harmonic analysis
associatedwith the Dunkl operators and it shows the utility of BMO spaces to establish some analytical results.
Originality/value –Dunkl theory is a generalization of Fourier analysis and special function theory related to
root systems. Establishing Paley and Hardy’s inequalities in these settings is a participation in extending the
Dunkl harmonic analysis as it has many applications in mathematical physics and in the framework of vector
valued extensions of multipliers.

Keywords Fourier–Dunkl expansions, Hardy spaces, BMO spaces, Paley’s inequality, Hardy’s inequality

Paper type Research paper

1. Introduction

Dunkl operators are differential-difference operators onRN related to finite reflection groups.
They can be regarded as a generalization of partial derivatives and they lead to a
generalization of the classical tools of harmonic analysis. For further details on the
corresponding basic theory, one can see Refs [1–3].

In rank-one case, we consider the Dunkl operatorDα associated with the reflection group
Z2 on R, given by

Dαf ðxÞ ¼ f 0ðxÞ þ
�
αþ 1

2

�
f ðxÞ � f ð−xÞ

x
; α≥ � 1=2:

For λ∈C, the following system�Dαf ðxÞ ¼ i λf ðxÞ; x∈R;
f ð0Þ ¼ 1;

(1)
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admits a unique solution, denoted by Eαðiλ$Þ expressed in terms of the normalized spherical
Bessel functions jα and jαþ1, namely

EαðiλzÞ ¼ jαðλzÞ þ iλz

2ðαþ 1Þjαþ1ðλzÞ;

where

jβðzÞ ¼

8><
>:

2βΓðβ þ 1Þ JβðzÞ
zβ

; if z≠ 0;

1 if z ¼ 0:

Jβ being the Bessel function of the first kind and order β (see Ref. [4]). For α ¼ −1=2, it is clear

that D−1=2 ¼ d=dx and E−1=2ðizÞ ¼ eiz.
For α≥ − 1=2, λ∈R and z∈C the estimate

jEαðiλzÞj≤ expjλ ImðzÞj (2)

holds. In particular, we have

jEαðiλxÞj≤ 1; λ; x∈R: (3)

As a generalization of the classical Fourier transform, the Dunkl transform F α of order
α≥ − 1=2 is defined by

F αðf ÞðλÞ ¼
Z

R

EαðiλyÞf ðyÞdμαðyÞ; λ∈R;

for f ∈L1ðR; dμαÞ the space of integrable functions with respect to the Haar

measure dμαðxÞ ¼ ð2αþ1Γðαþ 1ÞÞ−1jxj2αþ1
dx.

The aim of the present work is to obtain the analog of Paley and Hardy’s inequalities for

the Fourier–Dunkl expansions.We recall that ifRH 1 is the real Hardy space consisting of the

boundary functions f ðθÞ ¼ limr→1 RFðreiθÞ where F ∈H 1ðDÞ the Hardy space on the unit
disc Dwhich consists of the analytic functions FðzÞ on D satisfying

kFkH1 ¼ sup
0<r<1

Z 2π

0

jFðreiθÞjdθ < ∞;

and kfkRH 1 ¼ kFkH 1 with real Fð0Þ, then the Paley’s inequality is given by (see Ref. [5]):

"X∞
k¼1

jcnkðf Þj2 þ jc−nkðf Þj2
#1=2

≤CkfkRH1 ; (4)

where fnkg∞k¼1 is an Hadamard sequence, that is, a sequence of positive integers such that
nkþ1=nk ≥ ρwith a constant ρ > 1. And Hardy’s inequality is

X∞
n¼−∞

jcnðf Þj
jnj þ 1

≤CkfkRH1 ; (5)

where f ðθÞ∼P∞

n¼−∞
cnðf Þeinθ in RH 1 and C is independent of f .
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Analogs of these inequalities were established in Refs [6, 7] for the Fourier–Jacobi
expansions, and with respect to the Fourier–Bessel expansions in Ref. [8]. Although the
difficulties related to the Dunkl settings, the obtained results have strong similarities with (4)
and (5), since for α ¼ −1=2, we cover the classical case results. As we also cover the
inequalities established in Ref. [8] due to the fact that the Bessel transform is the even part of
the Dunkl transform.

Now, let us introduce the Fourier–Dunkl expansions and recall the definition of the
nonperiodic real Hardy space. It is wellknown that the Bessel function Jαþ1ðxÞ has an
increasing sequence of positive zeros fsngn≥1. Then, the real function ImðEαðixÞÞ ¼

x
2ðαþ1Þjαþ1ðxÞ is odd and it has the infinite sequence of zeros fsngn∈Z (with 0 < s1 < s2 < :::,

s−n ¼ −sn and s0 ¼ 0).
In Ref. [9], for α > − 1, the authors normalized the Dunkl kernelEα to obtain a sequence of

functions defining a complete orthonormal system in L2ðΔ; jxj2αþ1
dxÞ, whereΔ ¼ ð−1; 1Þ. In

this work, we define a new sequence of functions feα;nðixÞgn∈Z presenting a complete

orthonormal system of L2ðΔÞ, given by

eα;nðixÞ ¼ dα;n jsnxjαþ1=2
EαðisnxÞ; n∈Znf0g; x∈Δ; (6)

where

dα;n ¼ 1ffiffiffi
2

p jsnjαþ1=2 jjαðsnÞj

and

eα;0ðixÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p
xαþ1=2:

This orthonormal system is a generalization of the classical exponential system defining
Fourier series, and we define the Fourier–Dunkl expansion of a function f ðxÞ on Δ, by

f ðxÞ∼
X∞
−∞

cαnðf Þeα;nðixÞ; cαnðf Þ ¼
Z 1

−1

f ðyÞeα;nðiyÞdy:

We should mention that the theory of Hardy spaces on Rd was initiated by Stein and Weiss
[10]. Then, real variable methods were introduced in Ref. [11] and led to a characterization of
Hardy spaces via the so-called “atomic decomposition”, obtained by Coifman [12] when n ¼ 1,
and in higher dimensions by Latter [13]. A real-valued function a on Δ, is a Δ-atom if there
exists a subinterval I ⊂Δ, satisfying the following conditions:

(1) supp ðaÞ⊂ I,

(2)
R
I
aðyÞdy ¼ 0,

(3) kak∞ ≤ jI j−1, where jI j is the length of the interval I.

The function aðxÞ ¼ 1
2 x; x∈Δ, is a Δ-atom.

The nonperiodic real Hardy space is defined to be the set of functions representable in
the form:

f ¼
X∞
n¼0

λnan; (7)

where λn ∈C, verifying
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X∞
n¼0

jλnj < ∞;

and every an is aΔ-atom. The series in (7) converges in L1ðΔÞ (the set of integrable functions
on Δwith respect to the Lebesgue measure) and also a.e.

The Hardy space HðΔÞ is endowed with the norm k:kHðΔÞ, given by

kfkHðΔÞ :¼ inf

 X∞
n¼0

jλnj
!
;

where the infimum is taken over all those sequences fλng∞n¼0 ⊂Csuch that f is given by (7) for
certain Δ-atoms fang. Then HðΔÞ is a Banach space and kfkL1ðΔÞ ≤ kfkHðΔÞ.

Now, we state our theorem:

Theorem 1.1. Let α≥ − 1=2. then the Fourier–Dunkl coefficients cαnðf Þ of a function
f ∈HðΔÞ satisfy "X∞

k¼1

jcαnkðf Þj
2 þ jcα

−nk
ðf Þj2

#1=2
≤CkfkHðΔÞ; (8)

where fnkg∞k¼1 is a Hadamard sequence, andX∞
n¼−∞

jcαnðf Þj
jnj þ 1

≤CkfkHðΔÞ; (9)

where the constant C is independent of f .

This paper is organized as follows. In Section 2we state some technical lemmas needed for the
proof of Theorem 1.1. In section 3 we recall the duality property between BMO and Hardy
spaces, which plays an important role to prove a technical proposition for the proof of (8). In
the last section, we give the proof of Theorem 1.1 and we finalize with some remarks.

2. Some technical lemmas
We begin this section by collecting three asymptotic formulas which will be needed later:

(1) Let fsng∞n¼1 be the sequence of the successive positive zeros of Jαþ1ðxÞ, the Bessel
function of the first kind of order αþ 1. Then we have, (see Ref. [4])

sn ¼ π
�
nþ 2αþ 1

4
þ Oðn−1Þ

�
: (10)

(2) An estimation of the constant dα;n as stated in (6), is

dα;n ¼
ffiffiffi
π

p

2αþ1Γðαþ 1Þ ð1þ Oðn−1ÞÞ: (11)

(3) Using the asymptotic formula for the Bessel function JαðxÞ, the Bessel function of the
first kind of order α∈R, when x→ þ∞, given by

JαðxÞ ¼
ffiffiffiffiffi
2

πx

r
cos
�
x� ð2αþ 1Þ π

4

�
þ Oðx−3=2Þ;

we deduce that
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EαðixÞ ¼ 2αþ1=2Γðαþ 1Þffiffiffi
π

p
xαþ1=2

exp

�
i

�
x� ð2αþ 1Þπ

4

�	
þ O

�
1

xαþ2

�
; x→ þ∞: (12)

We begin with two auxiliary results interesting in themselves. We will denote by C a positive
constant which is not necessary the same in each occurrence.

Lemma 2.1. Let α≥ − 1=2, then there exists a constant C such that

jeα;nðix2Þ � eα;nðix1Þj≤Cjnjδjx2 � x1jδ; � 1≤ x1 ≤ x2 ≤ 1; (13)

where δ ¼ 1 for α ¼ −1=2 and δ ¼ minf1; αþ 1=2g for α > − 1=2.

Proof. If α ¼ −1=2, then e−1
2;n
ðixÞ ¼ eisnxffiffi

2
p

jcosðsnÞj, and the inequality (13) is obvious in this case.

For α≥ − 1=2, we consider the functionψαðuÞ ¼ jujαþ1=2
EαðiuÞ. By (10) and (11), to prove (13)

it is enough to show that

jψαðu2Þ � ψαðu1Þj≤C ju2 � u1jδ; (14)

for real numbers u1 and u2.

If ju2 − u1j > 1, then using (2) and (12) it is easy to see that supu∈RjψαðuÞj≤C. So (14) is
obvious in this case.

Now, if ju2 − u1j≤ 1, we have to distinguish the following three cases:

(1) If ju2 − u1j≤ 1, ju1j≥ 1 and ju2j≥ 1, using the fact that EαðixÞ is the unique solution of
the system (1) we obtain

ψ 0
αðuÞ ¼ i uαþ1=2EαðiuÞ þ

�
αþ 1

2

�
uα−1=2Eαð−iuÞ:

By (12) we get

sup
juj≥1

jψ 0
αðuÞj≤C:

And since 0 < δ≤ 1, (14) is proved.

(1) If ju2 − u1j≤ 1, ju1j≤ 1 and ju2j≤ 1, the power series representation of the Bessel
function leads to the power series of the Dunkl kernel

EαðiuÞ ¼
X∞
k¼0

ðiuÞk
ξαðkÞ

;

where

ξαð2kÞ ¼
22kk!Γðkþ αþ 1Þ

Γðαþ 1Þ and ξαð2kþ 1Þ ¼ 22kþ1k!Γðkþ αþ 2Þ
Γðαþ 1Þ :
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So EαðiuÞ is an entire function and we have

jψαðu2Þ � ψαðu1Þj ≤ juαþ1=2
2 j jEαðiu2Þ � Eαðiu1Þj þ kuαþ1=2

2 j � juαþ1=2
1 k jEαðiu1Þj

≤ ju2 � u1jsup
juj≤1

jE 0
αðiuÞj þC ju2 � u1jαþ1=2sup

juj≤1
jEαðiuÞj

≤ Cju2 � u1jδ;

where C is independent of u1 and u2

(1) For the case ju2 − u1j < 1, ju1j < 1 and ju2j > 1, we divide the matter in two parts at
the points 1 or −1 and we use the results established in the previous cases.

Lemma 2.2. Let −1≤ a < b≤ 1 and ðm; nÞ∈Z2nfð0; 0Þg:For α≥ − 1=2, there exists a
constant C verifying






Z b

a

eα;mðixÞeα;nðixÞdx




≤C

�
ðb� aÞ





mn





δ

þ logþðjnjðb� aÞÞ
jnj þ 1

jnj
�
; (15)

where δ is the same as in Lemma 2.1, and

logþ x ¼
�
log x for x≥ 1
0 for 0 < x < 1

For ðm; nÞ ¼ ð0; 0Þ, we have j R b

a
ðeα;0ðixÞÞ2dxj≤ 1.

Proof. Let K be the greatest non-negative integer such that 2πK
jsnj ≤ b− a. We have the

following three cases:

(1) If 0≤ a < b≤ 1, let xk ¼ aþ 2πk
jsnj for k∈ f0; 1; :::;Kg and xKþ1 ¼ b. Then we can write

Z b

a

eα;mðixÞeα;nðixÞdx ¼
XK
k¼0

A
ð1Þ
k þ A

ð2Þ
k ;

where

A
ð1Þ
k ¼

Z xkþ1

xk

ðeα;mðixÞ � eα;mðixkÞÞ eα;nðixÞ dx;

and

A
ð2Þ
k ¼ eα;mðixkÞ

Z xkþ1

xk

eα;nðixÞ dx:
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From Lemma 2.1 and the inequality (2), we conclude that

jAð1Þ
k j ≤ Cjmjδ

Z xkþ1

xk

jx� xkjδdx

≤ Cjmjδ
�
2π
jsnj
�δ

ðxkþ1 � xkÞ

≤ C





mn





δ

ðxkþ1 � xkÞ:

The last inequality is a consequence of (10), and we get

XK
k¼0

jAð1Þ
k j≤C





mn





δ

ðb� aÞ: (16)

For the estimation of the termA
ð2Þ
k , we remark that for α≥ − 1=2 and k∈ f0;Kg, using (2) we

obtain

jAð2Þ
k j≤C

Z xkþ1

xk

dx≤C
2π
jsnj≤

C

jnj: (17)

For k∈ f1; 2; :::; k− 1g, the asymptotic formulas (10), (11) and (12) permit to see that for
2π
jsn j≤ x1 ≤ xk ≤ x, we have

eα;nðixÞ ¼ 2αΓðαþ 1Þffiffiffi
π

p jjαðsnÞj
eiðsnx−ðαþ

1
2
Þ π
2
Þ

jsnjαþ1=2
þ O

�
1

jnjx
�
;

where O depends only on α. Then for k∈ f1; 2; :::;K − 1g, we have

jAð2Þ
k j≤C






Z xkþ1

xk

�
eiðsnx−ðαþ

1
2Þ π2Þ þ O

�
1

jnjx
��

dx





:
Since

R xkþ1

xk
eiðsnx−ðαþ

1
2Þ π2Þdx ¼ 0, for k∈ f1; 2; :::;K − 1g,

jAð2Þ
k j≤ C

jnj
Z xkþ1

xk

dx

x
¼ C

jnj ðlog xkþ1 � log xkÞ:

It follows that

XK−1

k¼1

jAð2Þ
k j≤ C

jnj ðlog xK � log x1Þ

≤
C

jnj logK

≤
C

jnjlog
þjsnj
2π

ðb� aÞ

≤
C

jnj ð1þ logþjnjðb� aÞÞ: (18)
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By (16), (17) and (18) we have the inequality (15) in this case.

(1) If−1≤ a < b≤ 0, the same steps as in the first case are applied by taking xk ¼ b− 2πk
jsnj

for k∈ f0; 1; :::;Kg and xKþ1 ¼ a.

(2) The case where −1≤ a < 0 < b≤ 1, is a consequence from the first and the second
cases, since we can write




Z b

a

eα;mðixÞeα;nðixÞdx




≤





Z 0

a

eα;mðixÞeα;nðixÞdx




þ





Z b

0

eα;mðixÞeα;nðixÞdx




:

The integrals on the right hand side of the last inequality cover respectively the second and
the first cases’ conditions. So there exist two positive constants C1 and C2, such that






Z b

a

eα;mðixÞeα;nðixÞdx




 ≤ C1

�
ð�aÞ




m
n




δ þ logþðjnjð�aÞÞ
jnj þ 1

jnj
�

þC2

�
b



m
n




δ þ logþðjnjðbÞÞ
jnj þ 1

jnj
�

≤ C

�
ðb� aÞ




m
n




δ þ logþðjnjðb� aÞÞ
jnj þ 1

jnj
�
:

3. Duality between BMO and Hardy spaces
The duality between bounded mean oscillation ðBMOÞ and Hardy spaces was studied
extensively in Refs [10, 14–16] and others. The nonperiodicBMOðΔÞspace is defined to be the
space of functions f ∈L1ðΔÞ, verifying

kfkBMO ¼ N Δðf Þ þ





Z
Δ
f ðxÞdx





 < ∞;

with

N Δðf Þ ¼ sup
I

1

jI j
Z
I

jf ðxÞ � fI jdx;

where the supremum is taken over all subintervals I of Δ and

fI ¼ ð1=jI jÞ
Z
I

f ðxÞdx:

The space BMOðΔÞ endowed with the norm kfkBMO is a Banach space and its duality with
the Hardy space ðHðΔÞÞ* ¼ BMOðΔÞ, plays an essential role in the proof of Theorem1.1. In
particular, if g ∈L∞ðΔÞ⊂BMOðΔÞ and f ∈HðΔÞ, we have the following inequality





Z
Δ
f ðxÞgðxÞdx





≤CkfkHðΔÞkgkBMOðΔÞ; (19)

where C is an absolute constant.
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Remark 3.1. For every subinterval I ⊂Δ and any constant c, we have

1

jI j
Z
I

jf ðxÞ � fI jdx≤ 2

jI j
Z
I

jf ðxÞ � cjdx;

for a function f on Δ.

The next proposition is the key tool to prove the Paley’s inequality.

Proposition 3.1. Let frkg∞k¼1 be a sequence such that
P∞

k¼1jrkj2 < ∞ and

gN ðxÞ ¼
XN
k¼1

rk ðeα;nkðixÞ þ eα;−nkðixÞÞ;

for a positive integer N. Then

kgNkBMOðΔÞ ≤C

 X∞
k¼1

jrkj2
!1=2

; (20)

with a constant C independent of N and the sequence frkg∞k¼1.

Proof. Knowing that




Z
Δ
gN ðxÞdx





≤ 2 kgNkL2ðΔÞ ¼ 4

 X∞
k¼1

jrkj2
!1=2

;

to prove (20), it is enough to show that

N ΔðgN Þ≤C

 X∞
k¼1

jrkj2
!1=2

; (21)

where the constant C is independent of I ;N and the sequence frkg∞k¼1. According to Remark
3.1, it is sufficient to verify that for every subinterval I ⊂Δ, there exists a constant cI such that

1

jI j
Z
I

jgN ðxÞ � cI j dx≤C

 X∞
k¼1

jrkj2
!1=2

:

Let I ¼ ½x1; x2� be a subinterval of Δ, then if jI j > 1=n1, we have

1

jI j
Z
I

jgN ðxÞjdx ≤

�
1

jI j
Z
I

jgN ðxÞj2dx
�1=2

≤ n
1=2
1

�Z
I

jgN ðxÞj2dx
�1=2

≤ n
1=2
1

 X∞
k¼1

jrkj2
!1=2

:
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If there exists a positive integerM, such that 1=nMþ1 < jI j < 1=nM , we show inequality (21)
with cI ¼ gM ðx1Þ. We write gN ðxÞ ¼ gM ðxÞ þ EM ;N ðxÞ, with

EM ;N ðxÞ ¼
XN

k¼Mþ1

rkðeα;nkðixÞ þ eα;−nkðixÞÞ:

It follows that

1

jI j
Z
I

jgN ðxÞ � gM ðx1Þjdx≤ 1

jI j
Z
I

jgMðxÞ � gM ðx1Þjdxþ 1

jI j
Z
I

jEM ;N ðxÞjdx: (22)

Using Schwarz’s inequality and Lemma 2.1, we get

jgM ðxÞ � gM ðx1Þj2 ≤
XM
k¼1

jrkj2
XM
k¼1

jeα;nkðixÞ � eα;−nkðix1Þ þ eα;−nkðixÞ � eα;−nkðix1Þj2

≤ 2
XM
k¼1

jrkj2
XM
k¼1

jeα;nkðixÞ � eα;−nkðix1Þj2 þ jeα;−nkðixÞ � eα;−nkðix1Þj2

≤ C
XM
k¼1

jrkj2
XM
k¼1

n2δk jx� x1j2δ

≤ C jI j2δ
XM
k¼1

jrkj2
XM
k¼1

n2δk

≤ C jI j2δ n2δM
XM
k¼1

jrkj2:

Since fnkg is a Hadamard sequence, it is possible to choose M such that jI j nM ≤ 1,
so that

jgM ðxÞ � gMðx1Þj2 ≤C
XM
k¼1

jrkj2

and

1

jI j
Z
I

jgM ðxÞ � gM ðx1Þjdx≤
�
1

jI j
Z

I

jgM ðxÞ � gM ðx1Þj2dx
�1=2

≤ C

 XM
k¼1

jrkj2
!1=2

: (23)

Now we estimate the second integral on the right-hand side of (22), we have
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�
1

jI j
Z
I

jEM ;N ðxÞjdx
�2

≤
1

jI j
Z
I

jEM ;N ðxÞj2dx

≤
XN

l ;k¼Mþ1

jrlkrkj
jI j






Z
I

ðeα;nlðixÞ � eα;−nlðixÞÞðeα;nkðixÞ � eα;−nkðixÞÞdx






≤ �2cm
XN

l ;k¼Mþ1

jrlkrkj
jI j

�
Unl ;nk þ Unl ;−nk þ U−nl ;nk þ U−nl ;−nk


;

where

Up;q ¼





Z
I

eα;pðixÞeα;qðixÞdx




:

Under the assumption nl≤ nk and by Lemma 2.2, we obtain

1

jI j





Z
I

ðeα;nlðixÞ � eα;−nlðixÞÞðeα;nkðixÞ � eα;−nkðixÞÞdx




≤C

�


nl
nk




δ þ logþðnkjI jÞ
jI jnk þ 1

jI jnk

�
:

Since fnkg is a Hadamard sequence, we have�
nl

nk

�δ

≤

�
1

ρδ

�k�l

:

If we fix a positive number μ, with 0 < μ < 1, then there exists a constant Cμ verifying:

logþðnkjI jÞ
jI jnk ≤ Cμ

�
1

jI jnk

�μ

≤ Cμ

�
1

ρμ

�k�l

:

For the last inequality we used the fact that jI jnl > 1 for l ≥M þ 1. Also, we have 1=ðjI jnkÞ≤
ð1=ρÞk�l . So we deduce that there exist two constants C and σ, with 0 < σ < 1, such that

1

jI j





Z
I

ðeα;nlðixÞ � eα;−nlðixÞÞðeα;nkðixÞ � eα;−nkðixÞÞdx




≤Cσjk�l j;

for l ; k≥M þ 1. As a consequence, there exists a constant C for which

1

jI j
Z
I

jEM ;N ðxÞjdx≤C

 X∞
l ;k¼1

σjk�l jjrlkrkj
!1=2

:

We estimate the sum in the right-hand side of the last inequality as followsX∞
l ;k¼1

σjk�l jjrlkrkj ¼
X∞
k¼1

jrkj2 þ 2σ
X∞
k¼1

jrkþ1krkj þ :::þ 2σp
X∞
k¼1

jrkþpkrkj þ :::

Using Schwarz inequality, we deduce that
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X∞
l ;k¼1

σjk�l jjrlkrkj ≤ ð1þ 2σ þ :::þ 2σp þ :::Þ
X∞
k¼1

jrkj2

≤ C
X∞
k¼1

jrkj2: (24)

Combining (23) and (24), we prove (20).

4. Proof of the theorem
Now, we come to the proof of Paley’s inequality (8). Let frkg∞k¼1 be a sequence such thatP∞

k¼1jrkj2 < ∞ and gN ðxÞ ¼
PN

k¼1rkðeα;nkðixÞ þ eα;−nkðixÞÞ; for N ¼ 1; 2; ::: By (19), we
obtain 





Z
Δ
f ðxÞgN ðxÞdx





≤CkfkHðΔÞkgNkBMOðΔÞ;

for f ∈HðΔÞ. Since
Z
Δ
f ðxÞgN ðxÞdx ¼

XN
k¼1

ðcðαÞnk
ðf Þ þ cðαÞ

−nk
ðf ÞÞrk:

Using Proposition 3.1, we get





XN
k¼1

ðcðαÞnk
ðf Þ þ cðαÞ

−nk
ðf ÞÞ






≤C

 X∞
k¼1

jrkj2
!
kfkHðΔÞ;

which leads to the inequality

(XN
k¼1

jcðαÞnk
ðf Þj2 þ jcðαÞ

−nk
ðf Þj2

)1=2

≤CkfkHðΔÞ;

Taking the limit as N →∞, we obtain (8).
To prove Hardy’s inequality associated with the Fourier–Dunkl expansion, we consider

the function f ∈HðΔÞ, there exists a unique sequence fakg∞k¼0 of Δ-atoms and a sequence
fλkg∞k¼0, such that f ðxÞ ¼P∞

k¼0λkakðxÞ a:e:;withX∞
k¼0

jλkj≤CkfkHðΔÞ: (25)

By (2), we see that

cðαÞn ðf Þ ¼
X∞
k¼0

λkc
ðαÞ
n ðakÞ;

and
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X∞
n¼−∞

jcðαÞn ðf Þj
jnj þ 1

≤C
X∞
k¼0

jλkj
X∞
n¼−∞

jcðαÞn ðakÞj
jnj þ 1

:

Using (25), to show Hardy’s inequality for the Fourier–Dunkl expansion, it is enough to
show that X∞

n¼−∞

jcðαÞn ðaÞj
jnj þ 1

≤C; (26)

for anyΔ-atom aandC independent of a. For the special case where a ¼ 1onΔ, the Schwarz’s
inequality and the Parseval’s identity yield

X∞
n¼−∞

jcðαÞn ðaÞj
jnj þ 1

≤

� X∞
n¼−∞

1

ðjnj þ 1Þ2
�1=2�Z 1

−1

dx

�1=2

≤C:

If a is a Δ-atom with I ¼ ½b; bþ h� as a support interval, then we have

cαnðaÞ ¼
Z bþh

b

aðxÞeα;nðixÞdx:

Since
R
I
aðxÞdx ¼ 0, we can write

jcαnðaÞj ¼





Z bþh

b

aðxÞðeα;nðixÞ � eα;nðibÞÞdx




:

Lemma 2.1 leads to

jcαnðaÞj ≤ C

Z bþh

b

jaðxÞj jnjδ ðx� bÞδ dx

≤ C jnjδ kak2 hδþ1=2;

where kak22 ¼
R
ΔjaðxÞj2dx.

On the other hand, the Δ-atom a satisfies the inequality h≤ kak−22 , so

jcαnðaÞj≤C jnjδ kak−2δ2 : (27)

If we denote γ ¼ kak22, we writeX∞
n¼−∞

jcαnðaÞj
jnj þ 1

¼
X
jnj≤γ

jcαnðaÞj
jnj þ 1

þ
X
jnj>γ

jcαnðaÞj
jnj þ 1

: (28)

Using (27), we get X
jnj≤γ

jcαnðaÞj
jnj þ 1

≤C kak−2δ2

X
jnj≤γ

jnjδ
jnj þ 1

≤C kak−2δ2 γδ ≤C: (29)

For the second sum in the right-hand side of (28), using Parseval’s identity and Schwarz’s
inequality, we have
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X
jnj>γ

jcαnðaÞj
jnj þ 1

≤ kak2
 X

jnj>γ

1

ðjnj þ 1Þ2
!1=2

≤C kak2 γ−1=2 ≤C: (30)

Combining (29) and (30) yields (26). This completes the proof of Hardy’s inequality for the
Fourier–Dunkl expansion.

At the end of this work, we should mention that Hardy spaceHðΔÞ can not be replaced by
L1ðΔÞ in (8) and (9). This condition is wellknown in the classical case and also in Ref. [8], where
the author proved the existence of functions f ; g ∈L1ð0; 1Þ such that the seriesP∞

n¼1jcnðf Þj2
and the series

P∞

n¼1jcnðgÞj=n diverge, where cnðf Þ; ðn ¼ 1; 2; :::Þ; represent the Bessel–
Fourier coefficients of the function f .
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