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1. Introduction
Dunkl operators are differential-difference operators on RY related to finite reflection groups.
They can be regarded as a generalization of partial derivatives and they lead to a
generalization of the classical tools of harmonic analysis. For further details on the
corresponding basic theory, one can see Refs [1-3].

In rank-one case, we consider the Dunkl operator D* associated with the reflection group
Z5 on R, given by

D (x) = £(x) + (a+%) M az —1/2.

For 1 € C, the following system

{ D (x)
f(0)

1A (x), x€R,
1 )

JEL Classification — 42B10, 46F12, 33C50, 30H10, 30H35 I‘
© Anis Elgarna. Published in Arab journal of Mathematical Sciences. Published by Emerald

Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0)

license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both Arab Journal of Math:ff_‘ﬁﬁfal

commercial and non-commercial purposes), subject to full attribution to the original publication and Emerald pubushing‘[ﬁﬁeej

authors. The full terms of this license may be seen at http:/creativecommons.org/licences/by/4.0/ ;E;ﬁ o

legalcode DO 10.1108/AJMS-12-2021-0312


http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-12-2021-0312

AJMS

admits a unique solution, denoted by £, (i1-) expressed in terms of the normalized spherical
Bessel functions j, and j, 1, namely

E,(i22) = ju(J2) + z(aiiﬂjj"“(’lz)’
where
, 2T+ 1)M, if z2#0,
inle) = ¢
1 if z=0.

J being the Bessel function of the first kind and order g (see Ref. [4]). For a = —1/2, it is clear
that D2 = d/dx and E_; 5 (iz) = ¢~
For a> —1/2, A€ Rand z € C the estimate

|E,(i72)| < exp|d bn(z)] ¥

holds. In particular, we have
|[E.(ix)| <1, A, xER. 3

As a generalization of the classical Fourier transform, the Dunkl transform F, of order
a> —1/2is defined by

Fal)(2) = / B (0)du, (), 1€ R,

for felLl (R,du,) the space of integrable functions with respect to the Haar
measure du, (r) = (2°7T(a + 1)) x[**dx.

The aim of the present work is to obtain the analog of Paley and Hardy’s inequalities for
the Fourier—Dunkl expansions. We recall that if RH" is the real Hardy space consisting of the

boundary functions f(6) = lim,_, RF (r¢) where F € H' (D) the Hardy space on the unit
disc D which consists of the analytic functions F(z) on D satisfying

2n
|Fn = sup / F(re%)d6 < oo,
0<r<1J0o

and ||[f |z = ||F || with real F(0), then the Paley’s inequality is given by (see Ref. [5]):

- 1/2
{Z len (NP + IC—nk(f)IZ} <Cllf gz @)
=1

where {#,};- , is an Hadamard sequence, that is, a sequence of positive integers such that
Ney1/Mp > p with a constant p > 1. And Hardy’s inequality is

> <, ®

where £(6) ~ 32 __c,(f)e” in RH" and C is independent of f.



Analogs of these inequalities were established in Refs [6, 7] for the Fourier—Jacobi
expansions, and with respect to the Fourier—Bessel expansions in Ref. [8]. Although the
difficulties related to the Dunkl settings, the obtained results have strong similarities with (4)
and (5), since for @« = —1/2, we cover the classical case results. As we also cover the
inequalities established in Ref. [8] due to the fact that the Bessel transform is the even part of
the Dunkl transform.

Now, let us introduce the Fourier-Dunkl expansions and recall the definition of the
nonperiodic real Hardy space. It is wellknown that the Bessel function /,;1(x) has an
increasing sequence of positive zeros {s,},.;. Then, the real function Im(E,(ix)) =
WQH (x) is odd and it has the infinite sequence of zeros {s, },c; (With 0 < s1 <s2 < ..,
S_p = =Sy and sp = 0).

InRef.[9], for a > — 1, the authors normalized the Dunkl kernel £, to obtain a sequence of

functions defining a complete orthonormal system in L?(A, |x[****dx), where A = (-1,1).In
this work, we define a new sequence of functions {e,,(ix)},c, presenting a complete

orthonormal system of LZ( A), given by
Can(i%) = dyy 5,52 Ey(isyx), n€ Z\{0}, x€ A, ©)

where

i 1
an \/Q |Sn|a+1/2 Ua(sn)‘

and
eao(in) = Va+ 14712,

This orthonormal system is a generalization of the classical exponential system defining
Fourier series, and we define the Fourier—Dunkl expansion of a function f(x) on A, by

~ ) () ean(ix), / JF()ean(wy)d

We should mention that the theory of Hardy spaces on R? was initiated by Stein and Weiss
[10]. Then, real variable methods were introduced in Ref. [11] and led to a characterization of
Hardy spaces via the so-called “atomic decomposition”, obtained by Coifman [12] whenz = 1,
and in higher dimensions by Latter [13]. A real-valued function @ on A, is a A-atom if there
exists a subinterval I C A, satisfying the following conditions:

1) supp (a) ],
(2) f[(l(y)dy = Oy
@ llalle, =< |, where |I| is the length of the interval I.

The function a(x) = 1x, x€ A, is a A-atom.
The nonperiodic real Hardy space is defined to be the set of functions representable in

the form: o
f = Z}vnam (7)

n=0

where 4, € C, verifying
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o0
D V| < o0,

n=0

and every a,, is a A-atom. The series in (7) converges in L' (A) (the set of integrable functions
on A with respect to the Lebesgue measure) and also a.e.
The Hardy space H(A) is endowed with the norm ||.||;,), given by

W Nl == inf(z |/1n|) )

n=0
where the infimum is taken over all those sequences {4, },-, C Csuch that f is given by (7) for
certain A-atoms {a,}. Then H(A) is a Banach space and [|f1| 1) <[[fll(a)-
Now, we state our theorem:

Theorem 1.1. Let a> —1/2 then the Fourier—Dunkl coefficients ci(f) of a function
fE€H(A) satisfy

. 1/2
{Z LA Mm@ < Cllflla, ®)
=1
where {n;,},2 is a Hadamard sequence, and

where the constant C is independent of f.

This paper is organized as follows. In Section 2 we state some technical lemmas needed for the
proof of Theorem 1.1. In section 3 we recall the duality property between BMO and Hardy
spaces, which plays an important role to prove a technical proposition for the proof of (8). In
the last section, we give the proof of Theorem 1.1 and we finalize with some remarks.

2. Some technical lemmas
We begin this section by collecting three asymptotic formulas which will be needed later:

(1) Let {s,},-; be the sequence of the successive positive zeros of J,.1(x), the Bessel
function of the first kind of order a + 1. Then we have, (see Ref. [4])

20 +1
5, = ﬂ(n +E O(n-l)). (10)
(2) An estimation of the constant d , as stated in (6), is
VT -1
da I T E— 1 + On . 11

(3 Using the asymptotic formula for the Bessel function /, (x), the Bessel function of the
first kind of order @ € R, when x - + oo, given by

Ja(x) = \/%Cos(x —(2a+1) 4) + O(x —3/2)

we deduce that



a+1/2
EAZ’x):%M%p[i(x—@)] +O(}%),x—> + 0. 12

We begin with two auxiliary results interesting in themselves. We will denote by Ca positive
constant which is not necessary the same in each occurrence.

Lemma 2.1. Let a> —1/2, then there exists a constant C such that

lean(iX2) — €an(it)| <Cln’ 2z — 211|°, — 1< <42 <1, (13)

where 6 = 1for a = —=1/2and 6 = min{l,a +1/2} fora > -1/2.
Proof. Ifa=-1/2 thene_y,(ir) = \/ilizlszsn)l’

For a > —1/2, we consider the functiony, () = \u|a+1/ ?E,(iu). By (10) and (11), to prove (13)
it is enough to show that

and the inequality (13) is obvious in this case.

Waltz) = o () |<C |z — aur]”, (14)

for real numbers #; and us.

If |ug — u1| > 1, then using (2) and (12) it is easy to see that sup,eg |y, (#)| < C. So (14) is
obvious in this case.
Now, if |ug —u1| <1, we have to distinguish the following three cases:

(1) If|ug—w1| <1, |u1| >1and |ug| > 1, using the fact that £, (ix) is the unique solution of
the system (1) we obtain

Wl (u) = 1w PE, (i) + (a + %) u V2 E, (—iu).

By (12) we get
suply, ()] <C.

u[>1

And since 0 < § <1, (14) is proved.

(1) If lug—u1| <1, |u1] <1 and |ug| <1, the power series representation of the Bessel
function leads to the power series of the Dunkl kernel

.k
Eii) =3 5(“2,1)

where

2RIk + a4 2)
Fa+1)

2%RI0(k 4 a + 1)

82K = —F 05D

and £,(2k+1) =
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So E,(iu) is an entire function and we have

a+1/2 . . a+1/2 a+1/2 .
Walt2) =y, ()| < lus ™) |Balitez) — Eulin)| + |y ™| = 2] | B
< |uy — wy|sup|E. (ine)| + C |us — uy|*"*sup|E, (iue)|
Jul<1 Ju|<1
< Cluy — ),

where C is independent of #; and u,

(1) For the case |ug —u1| < 1, |u1| < 1and |ug| > 1, we divide the matter in two parts at
the points 1 or —1 and we use the results established in the previous cases.

Lemma 2.2. Let —1<a < b<1 and (m,n) € Z*\{(0,0)}. For a> —1/2, there exists a
constant C verifying

+b§ﬂm@aﬂ+1}, (15
|n| |n|

b
/ Cam (ix)ea,;1 (lx) dx

’ m

SC{(b—a)%

where 6 is the same as in Lemma 2.1, and

+ . [logx for x>1
log x—{ 0 for O<zx<xl1

For (m,n) = (0,0), we have | fab (ea,o(ix))zdx| <L

Proof. Let K be the greatest non-negative integer such that %sb—a. We have the
following three cases:

1) Ho<a<b<lletx,=a —i—%forke {0,1,...,K}and xx+1 = b. Then we can write

b K
/ Cam (1) (1) dx = ZA,(:) +A?,

k=0

where
o Xe+1 . . .
A = / (Cam (1) — €qm(ixr)) €qn(ix) dx,
Xk

and

X1
A = ey, (ix,) / Can(ix) dv.

k



From Lemma 2.1 and the inequality (2), we conclude that

o s [ 5
14,71 < Cim| | — x| dx
Xk
27\’
< c () s -
I ]

m 5
clZ
Al
The last inequality is a consequence of (10), and we get
K
AP I=cC
=0

For the estimation of the term A,(f), we remark that for a > —1/2and 2 € {0, K }, using (2) we
obtain

A

IA

Xet1 — xk)-

%Mb—@. (16)

C

17
SIS o

|A|<C/7 dr<CE

For ke{l,2,...,k—1}, the asymptotic formulas (10), (11) and (12) permit to see that for
‘ . T < x1 < X <x we have
) 20T ((I+1) zs,,x—aJr)) <1>
Can(iX) = + 0|l —),
( ) \/_l]a(sn)‘ ‘Sn|a+1/2 |n‘x

where O depends only on a. Then for k€ {1,2, ..., K — 1}, we have

K41 . )
mf”sci/ (awxaﬁs-+o(‘|)>
X
Since [ ¢~ dx = 0, for ke {1,2, K—l},
1 dx
AP <= / logx;m log xz).
Il J,

It follows that

=

-1 C
\A,(f)\ < —(logxx — logx;)
= [
< £logK
|n
C. ilsil
< ﬂlog or (b—a)

ﬁa T log" |nl(b — ). 1)
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By (16), (17) and (18) we have the inequality (15) in this case.

(1) If-1<a < b<0,the same steps as in the first case are applied by taking x, = b —
for ke {0,1,...,K}and xx1 = a

(2) The case where —1 <a < 0 < b<1, is a consequence from the first and the second
cases, since we can write

2k
[$n]

< +

/ b Con (1) €0 (12)dx

/ ' Comn (1) €q 1 (12) dx

b
/ Cam (Z'x)ea,n (Z.X') dx

The integrals on the right hand side of the last inequality cover respectively the second and
the first cases’ conditions. So there exist two positive constants C; and C,, such that

/ab Cam(iX)eqn(1x)dx| < Cl{(—a)‘% s N 10g+(||nn|(a)) N %}
<t )
< cfo-afr] 00 1}

3. Duality between BMO and Hardy spaces
The duality between bounded mean oscillation (BMO) and Hardy spaces was studied
extensively in Refs [10, 14-16] and others. The nonperiodic BMO(A ) space is defined to be the

space of functions f € LI(A), verifying
JREL
A

HfHBMo = NA(f) +

< o0,
with
1
Natf) = suwr | 1709 =l
where the supremum is taken over all subintervals I of A and
i = /1) [ Fwn.
1

The space BMO(A) endowed with the norm ||f|| 5, is @ Banach space and its duality with
the Hardy space (H(A))" = BMO(A), plays an essential role in the proof of Theoreml.1. In
particular, if g€ L*(A) c BMO(A) and f € H(A), we have the following inequality

/A £ <CIY a1 mrsors (19)

where C is an absolute constant.



Remark 3.1. For every subinterval I C A and any constant ¢, we have
1 2
i ) = slde < [ 170 = el
\1.J: 11/

for a function f on A.
The next proposition is the key tool to prove the Paley’s inequality.

Proposition 3.1. Let {1}, be a sequence such that "5, |r* < oo and
N

AN (X) =D 7k (Cam, (i) + a o (ix)),
=
for a positive integer N. Then
. 1/2
llgnlzaroca) 5C(Z |”k2> ; (20)
=1

with a constant C independent of N and the sequence {73} 5o ;.

Proof. Knowing that

. 1/2
’/Agzv(x)dx <2llgnllpza) =4 (Zlfkf) ;
. =1

to prove (20), it is enough to show that

o 1/2
Ns(gw) sC<Z mz) : @1)
k=1

where the constant Cis independent of I, N and the sequence {7 },- ;. According to Remark
3.1, it is sufficient to verify that for every subinterval I C A, there exists a constant ¢; such that

1/2
1 g o
7/ |gN(x)—Cz|deC< g sz) .
111 —

Let I = [x1, x2] be a subinterval of A, then if |/| > 1/m, we have

i [levwlar < ([ lestorar) "

IA

3
-2

[\
N\
-\
2
B

L T
s &
N———
N

IA
,_‘S,_‘
=
oo
/N
(s
=
T
~
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If there exists a positive integer M, such that 1/ny7.1 < |I| < 1/np, we show inequality (21)
with ¢; = gyr(x1). We write gy (%) = gu (%) + Ep (%), with

N

Eyn@) = > 74(Can,(ix) + €an(ix)).

k=M+1

It follows that
1
II\/ g (x) — g () dr < \II/ L0 () — s (1) + m/ Eyn(lde.  (@2)
I
Using Schwarz’s inequality and Lemma 2.1, we get

M
lgw (x) —gu()f® < 7l Nean, (%) = Caon,(i51) + €, (iX) — €an,(i51)[*
k=1

Ma oG

< 7l Z|ea (%) = € (120) [+ [0 (%) = g (i20)
=1
M M
< Cy Y mlle—ml”
71 =1
< CUPSInf Z"
=1
< curigy nf

Since {7} is a Hadamard sequence, it is possible to choose M such that |I|ny <1,
so that

M
g (%) — gu () < C [l

k=1

and

1 1 , 1/2
m/} lgnr (%) — gur (1) |dx < (m/ |1gM(x) — gu(x)| dx>

M 1/2
<C (Z |rk|2> : 23)
k=1

Now we estimate the second integral on the right-hand side of (22), we have



The Fourier—

1 ? 1 2 Dunkl
— 5 ) < —[IE d .
(Il I/z‘ ()] x) \1|/1| (@)l dr expansions
N
< il / (Cani) — Can (%)) (Cay (i) — €y (1))l
th=M+1 | | 1
< —2cm Vf'Vk' [[]n,,nk + Unf,—nk + U—n/,n/e + U—n/,—nk]y
{k=M+1 |I|

where

UZM] = ‘/ea_p(ix)ea‘q(ix)dx
1

Under the assumption 7, <, and by Lemma 2.2, we obtain
1| . . . .
/ (Cap (i) — €q—n, (1)) (€, (1) — €q—, (1) )dx| < C {
I
Since {#y} is a Hadamard sequence, we have

1]
() <)
) < = .
m) —\p°

If we fix a positive number y, with 0 < y < 1, then there exists a constant C, verifying:

log™ (m|) 1\
e = i

1 k—t
G, Q_u) |

For the last inequality we used the fact that |7|n; > 1for/>M + 1. Also, we have 1/(|/|n;) <
(1/p)¥". So we deduce that there exist two constants C and ¢, with 0 < ¢ < 1, such that

% /I(ea,w(iX) - ea,—m(ix))(ea,ﬂk(ix) - e‘lv—”k(ix))dx

n

o log (nll]) | 1
ny, ’

+ PR
|| | |2z

—(]
< CG‘ |’

for ¢,k > M + 1. As a consequence, there exists a constant C for which

1/2
1 [Se]
1 / Eux@ldr<C (3o nlnl |
1. =
We estimate the sum in the right-hand side of the last inequality as follows

) oo ® =
> rdind = Inl + 20> lreallnid + o+ 207> el + .

(=1 =1 =1 =1

Using Schwarz inequality, we deduce that
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> o nllnl < 1420+ ..+ 20" +..)> _|nif’

(=1 =1
<C Il 24)
=1
Combining (23) and (24), we prove (20).

4. Proof of the theorem
Now, we come to the proof of Paleys inequality (8). Let {7;}-; be a sequence such that

S 1|7k\ < oo and gy(x) = Zk 17k (€qn, (1%) + €q—n,(ix)), for N =1,2,... By (19), we
obtain

/A F®gy (x)dx

< CHfHH(A) HgN”BMO(A)

for f € H(A). Since

N
[ 7 watas =320 + ¢4

Using Proposition 3.1, we get

N

(< () + . ()

<C ( > I )Hf”?-t

k=

which leads to the inequality

N ) 1/2
{ZI@%‘Z) ) +1¢, 00 } SCll llyyga)
k=1

Taking the limit as N — oo, we obtain (8).

To prove Hardy’s inequality associated with the Fourier—-Dunkl expansion, we consider
the function f € H(A), there exists a unique sequence {a;},-, of A-atoms and a sequence
{}ep such that f(x) = D7 jhear () a.e., with

0

Z 2] < Il [lga)- (25)

k=0

By (2), we see that
W) = (@),
=0

and



| )

\ a/e)|
Z \n|+1 - Z |Z |n) +1°

k= Nn=-—co

Using (25), to show Hardy’s inequality for the Fourier—Dunkl expansion, it is enough to
show that

|e(a)]
Z |n| + 1 < 26)

Nn=-—00

for any A-atom ¢ and Cindependent of a. For the special case where ¢ = 10on A, the Schwarz’s
inequality and the Parseval’s identity yield
1/2

ZI|n|+1 (quiu)/(/d’o ¢

n=-—00 n=—0o0

If ais a A-atom with I = [b, b + /] as a support interval, then we have
b+h
ci(a) = / a(x)eq,(1x)dx.
b
Since [,a(x)dx = 0, we can write

b+h
1(a)] = ‘ /b () (an (i) — 0 (iB))d|.

b+h
C [ lalnl x~b)ds
b

Clul’ ||a]l, 12,

Lemma 2.1 leads to

QQ
PR
D)
=
IA

IA

2 2
where ||al; = [, |a(x)|dx.
On the other hand, the A-atom a satisfies the inequality / < HaHZ_Z, )

c3(@)|<C |n|” [lall;”. 27)

If we denote y = ||a||§, we write

e (@)]
Z|ﬂ\+1 Z|n|+1 Z|n|+1 (28

n=-0co [n|<y [n]>y

Using (27), we get

- nf°
<C ”aHZZ& Z [+ 1

\n\<r nl<y
<C|la|;*y° <C. (29)

For the second sum in the right-hand side of (28), using Parseval’s identity and Schwarz’s
inequality, we have

The Fourier—
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1/2
ey (@) 1 ~1/2
E z <lla E —_— <C|la 2 <C. 30

>y [n]>y

Combining (29) and (30) yields (26). This completes the proof of Hardy’s inequality for the
Fourier-Dunkl expansion.
At the end of this work, we should mention that Hardy space H(A) can not be replaced by

L (A)in (8) and (9). This condition is wellknown in the classical case and also in Ref. [8], where

the author proved the existence of functions f,g € L' (0, 1) such that the series Sooalen(f) &
and the series > |c,(g)|/n diverge, where ¢,(f), (n = 1,2, ...), represent the Bessel-
Fourier coefficients of the function f.
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