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Abstract

Purpose - In this paper, the authors prove that the Douglas space of second kind with a generalised form of
special (@, f)-metric F, is conformally invariant.

Design/methodology/approach — For, the authors have used the notion of conformal transformation and
Douglas space.

Findings — The authors found some results to show that the Douglas space of second kind with certain (a,
P)-metrics such as Randers metric, first approximate Matsumoto metric along with some special (@, )-metrics,
is invariant under a conformal change.

Originality/value — The authors introduced Douglas space of second kind and established conditions under
which it can be transformed to a Douglas space of second kind.
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1. Introduction

A number of geometers have been studying Douglas space [1, 2] from different point of view.
The theory of Finsler spaces more precisely Berwald spaces with an (a, )-metric [3-5] have
significant role to develop the Finsler geometry [6]. The concept of Douglas space of second
kind with (a, §)-metric was first discussed by I. Y. Lee [7] in Finsler geometry. In [8], S. Bacso
and Matsumoto developed the concept of Douglas space as an extension of Berwald space. In
[9], S. Bacso and Szilagyi introduced the concept of weakly-Berwald space as another
extension of Berwald space. In [10], M. S. Kneblman started working on the concept of
conformal Finsler spaces and consequently, this notion was explored by M. Hashiguchi [11].
In[12,13]Y.D. Lee and B.N. Prasad developed the conformally invariant tensorial quantities
in a Finsler space with (@, §)-metric under conformal -change.
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In this paper, we prove that the Douglas space of second kind with generalised special
(@, p)-metric is conformally invariant. In the consequence, we find some results to show that
the Douglas space of second kind with certain (@, §)-metric such as Randers metric, first
approximate Matsumoto metric and Finsler space with some generalised form of («, 5)-metric
remains unchanged geometrically under a confomal transformation.

2. Preliminaries

A Finsler space F" = (M, Fla, p)) is said to be with an (a, f)-metric if F, p) is a positively
homogeneous function in @ and g of degree 1, where a is Riemannian metric given by
@ = a;(x)y"y and g = b(x)y’ is 1-form. The space " = (M, a) is called Riemannian space
associated with F”’. We shall use the following symbols [6];

b =d"b,, b* = a*b,b,
27’17 = biv + bj\z‘, 281’]' = biU - bﬂ,‘
s, =a’s;j, ;=10

The Berwald connection

o}f F” plays an important role in this paper. Bjk denotes the difference tensor of ij and yjk
that 1s

Giy(x,3) = 1y(x) + Bjy(x,). (1)

Using the subscript 0 and transvecting by ¥, we get
G =7y +B and 2G =y + 2B, %)
and then B]Z = @H and Bjk = ('9;33;. A Finsler space F" of dimension # is called a Douglas
space [14] if
D =G x9)Y = Gx), )

are homogeneous polynomial of () of degree three.

Next, differentiating (3) with respect to ¥, we obtain the following definitions;
Dgﬁnition 1. (14) A FEinsler space F'is a Douglas_ space of second kind if
D, = (n+1)G — Gy is a two homogeneous polynomial in (v').

On the other hand, a Finsler space with (a, )-metric is a Douglas space of second kind if and
only if

B = (n+1)B =By, @

are homogeneous equation in () of degree two, when B is same as given in [14].
Furthermore, differentiating Eqn (4) with respect to ¥, ¥/ and y*, we obtain

B" = Bizjk =0. ®)

hjkem

Definition 2. A Finsler space F* with (a, p)-metricis known as Douglas space of second kind if

B = (n+1)B' — Bl is a homogeneous polynomial in (v) of degree two.



3. Douglas space of second kind with (a, f)-metric

Conformal

Under this section, we discuss the criteria for a Finsler space with an (a, f)-metric to be a transformation

Douglas space of second kind [2].
The spray coefficient G'(x, ) of F”" can be expressed as [4].

2G' =yh + 2B ®)
Ay [P o (¥ ab
Bl_FaOJFC{Fy F, \a 7)) (7)
where
. _ aﬁ(f’ooFa — 26{SOF/;)
Z(ﬂzFa"’a}’zFaa) ’
J/2 _ b2a2 o ﬁ2~ (8)

Since y{y, = 7}, (x)¥y* is hp(2), Eqn (7) yields

B =5 4 ) +

PE,
By means of (3) and (9), we obtain the following lemma [14];

C* (6 — b). ©)

Lgmma_l. A Finsler space F" with an (a, p)-metric is a Douglas space if and only if
= BY — BY are hp(3).

Differentiating (9) with respect to y " 4% 3 and y7, we can have Dz tpg = 0 which are equivalent
to thﬁm (n+ 1)Dlhkp = 0. Hence, a Finsler space " satisfying the condition I/ g = 018

called Douglas space. Now, differentiating Eqn (9) with respect to ™ and contracting 2 and j
in the resulting equation, we get

B (n+ 1)aFs, N a{(n+1)@QF,b + pr’Ay }rw

F, 20°
. . _ (10)
{(n+ 1)@ QFF,ab" + By }so B Fu'70
F,Q? Q
where Q = (f°F, + ay’F,), provided that Q # 0, A = aF Freq + 3F.Fue — 3a(F,)” and
B = aﬁyzFaF/iFaaa +ﬂ{ (3}/2 - ﬂZ)Fa - 4a72Faa}F/iFaa + QFFaa (11)

Following result is used in the succeeding section [7]:

Theorem 1. A Finsler space F* is a Douglas space if second kind if and only if Bﬁn’" are
homogeneous polynomials in (V™) of degree two, where B;,' is given by Egs (10) and (11),
provided Q # 0.

4. Conformal change of Douglas space of second kind with (a, #)-metric
In this section, we find the criteria for a Douglas space of second kind to be conformally
invariant. -

Let F” = (M,F)and F" = (M, F') be two Finsler spaces. Then F" is called conformal to F'
if we have a function o(x) in each coordinate neighbourhood of M”" such that

F(x,y) = ¢°F(x,y) and this transformation F — F is called conformal change.

of Douglas
space




AJMS A conformal change of (a, f)-metric is given as (a, 8) — (@, B), where @ = ¢’a, f = ¢°f

that is,
EZ-]- = 8206ll‘]‘, bl = e"bl-
. . A o
@' =e¢%d", b =l

and b2 = dijbl‘bj = ﬁ@@
From Eqn (13), the Christoffel symbols are given by:

Tie =V + 804 + 8,0, — o',
Where, 6; = 9o and ¢’ = d’s;.
Using (13) and (14), we obtain the following identities:
Vibi = ¢ (Vibi + paj — aiby),

1
7i=¢" |:V[j +pay — 5 (bio; + bjm)} ;
_ 1
Sj = ¢ [Sz'j +5 (bio; — ij"z')] ,

. 1 .
§=¢° {SHQ(”G;' —b,-al)},

1
5 =5+ (00— pby),
Where, p = 6,0
Using Eqgs (14) and (15), we get easily the followings:
Yoo = Yoo + 2000 — @0,
7w = € (rw + pa® — 00f),

56 =e7 s, + % (asobi — ﬁai) ,

50 = S0+ % (o0b' — pp).
Now we obtain the conformal transformation of BY given by Eqn (9).
Consider F(a, f) = ¢°F(a, §) then
Fa = Foy Faa = ¢ Foy F; = Fj, 7 = &
From Egs (8), (19), (20) and using Theorem 3.1, we obtain
C =e(C+D),
Where,

ap[(pa® — 6op)F, — a(V?oy — pB)Fy]

D=
Z(ﬁzFa + ayzFaa)

12)
13)

(14)

15)

(16)
)

18)

19)

(20)

21)

22)



Hence BY can be expressed as: Conformal

—i an PFoa ry (i 1 transformation
B = (Wl W) + pF, <, ¢ (Y =) of Douglas
aﬁF,, space

<aaoF,; aFm (azyi )

F. ' pR, >(W vy) -
=B+ 7,

Where,

i (oo aFw, ; apFy N
c 7( o T )(by’ )~ DL (0¥ — o).

Using Eqn (11), we can have

Q=¢"Q, A=¢ A, B=¢"B. 23)
Now, we use conformal transformation on Bi’” and obtain
B, =B"™ +K™ 24)

Where, K™ is given by [15, 16].

. . ) 7 2 )
i = DD g 1 o NI
25
{(n+1)2QVFyFoli + By )

(b0 — pB).

F,0?

Therefore, we obtain the following result:

Theorem 2. A Douglas space of second kind is conformally invariant if and only if K ﬁnm (x)are
homogeneous polynomial in (') of degree two.

5. Conformal change of Douglas space of second kind with special («, f)-metric
F=a+g+kl;
Consider a Finsler manifold with special (@, #)-metric defined as
t+1
F=a+ef+ k%,
Where, € and k% are constant.
Then we obtain
/}t+1
ottt
ﬁl‘

F,=1—-th—

ﬂt+1
Fuu =t + DL
—6kp*

Faaa: P



AJMS Therefore, using Eqn (11), we obtain
=t + 2k + [+ DLt + 1)ap' | ap

altl

41 141
A=1t(1t+1) kﬁ* [1—;} 2t(t+2)kﬂ;} 27)

B:H+1;[+];[

Where,

2 1 2141
Hz—t(t+1)(t+2) ‘BH {€+/€(l‘+1)£—enkﬂt—+—t(t+1)k2§t+](bZO,?_ﬂZ)7

2141
1

= (t—i—l)kﬂ:z <e+k(t+1)ﬁt> [<3 t(4t+7)ﬂi:1>b2a2+( (t+2)kﬁi—i—1)4ﬂ}

2

ﬁt+2 ) ﬁt
[1= t¢+1)% I (aﬂ+€ﬂ)+t(z‘+1);

3

{(V*a® +eb’ap—kp* —ekpPa™)

41
+ﬁt7+1(b2 2 kzﬁ )}:|

Hence, using Eqn (26), KﬁZ’ can be reduced as

oK™ = (n+ 1)0{6 +R(t+1) %} (o' — ') + (ads + aks) (p — 0up) )

- [Bo + (B1 + B, -I—Bg)yi — Cl] (b20'0 - pﬁ)
Where,

_ (n+ )¢t + 1)ka?p™! ¥
{at 17 + D21 (t + D)2} — t(t + 2)RpT

H(t+ Dk[(1 — Ha'™t — 26(t + 2)kp] ﬁfyz
[{a 1B+ D2t(t + 1)a2p'} — t(t +2) /3”2]

;

aAz =

(n+ Dt(t + Dk’ B (ea’ + k(t + 1)p')
(ot — k™) [t 1 + D24(¢ + 1)a2B' — £(t + 2)kp]

_ i

By =

—t(t+ 1) (t + 2)ka®B T (e + k(t + 1)a B — etk f1 — 1(t + 1P
(@1 — thp ) [t 2 + D21t + 1)e2f — H(t + 2)kp )

I



tHt + 1)(t + 2k’ 2 (e + k(t +1)p') Conformal

( 41 tkﬂ”‘“) [at+1ﬂ2 + bzt(t + l)azﬁm _ t(t + 2)kﬂ”3}2 transformation
of Douglas
space

[30%a! ™ — t(4t + T)kD* P — AT 7 + 42 (¢ + 2)kpT.

kt(t +1)(ap)
( 141 tkﬂ”‘“)[ t+1ﬂ2+b2t(t+1)a2ﬂt+l —t(t—|—2)kﬂ”3}2
[aHZﬂ 4 EaHlﬁ t(t+ 1) (bzasﬂt _ kaﬂHZ) 4 (t(t—l— 1) 4 6b2>02ﬂt+2
—(t(t + 1)ke + K2) 5]

By =

B —t( +1)ka2ﬁ”1
= [at+1ﬂ2+b9 ( +1)a2ﬁt+1 (t+2)kﬂf+3

7

Now, Eqn (28) can also be written as
2K}y = (n+ V)ale+k(t+1)(@78)] (00 — p0’) + b1+ b2+ b5+ b1+ b5 + s+ br. (29
where,
b =aA; (Pa - 00/3)
b2 = als(pa® — 60p)
b3 =—By(b*60 — pp)

by =By (0’6o — pp)

= —Byy (b*60 — pp)

= =B/ (o0 - pp)
b= (b )

showing that K iZ’ is homogeneous polynomial of degree 2 in '.

Theorem 3. A Douglas space of second kind with special (o, p)-metric F = a + € + k%l,
where € and k are constants, is conformally invariant.

With the help of Theorem 3 it can be proved that a Douglas space of second kind with a
Finsler space of certain (@, #)-metric is conformally transformed to a Douglas space of second
kind. In this way, one can have following possible cases;

Case(i). If e = 1 and £ = 0, we have F' = a + $ which is Randers metric. In case, ZKZ"
occupies the form

2K = (n+ Da(opb' — po'), (30)
Which shows K Z? is homogeneous polynomial in (/) of degree two.

Note that in this case, p; = p2 = p3 = ps = ps = pe = p7 = 0.



AJMS Corollary 1. A Douglas space of second kind with Randers metric F = a + B, is conformally
invariant.

Case(ii). f e=0and 2 =1, wehave FF = a + /%1 In this case 2K’ iZq obtains the form

2K = (n+1)(t+1) (a'lﬁ)a(ﬂobi - ﬂai) + @+ a3 i+ a5+ as+an, B

Where,
- (n+Dtt +1)a?p™! o
" at+]ﬁ2 + bzt(t + 1)a2ﬂt“ — l‘(t + 2)kﬁl‘+3 b (Uob ﬂal)a
_ [0 o -2 p N
[+ B+ Deep it 427
— (n+ Dt(t + 1) °a* g ,
q3 = (a‘“ _ tﬂ”l) [af“ﬂ + Dt(t + 1)a2f — t(t + Z)ﬂprz} (b 00 pﬁ)7

HE+ 1)+ 2) B ,
- o o)
TP Rt N — 1 2 (b0 = pp)

. —t(t+ 1) 2[00 — t(4t + T)DPa?F ! — A2 4d(t +2)8
5=
((ZHI _ tﬂtﬂ) [(x”lﬁz + bzt(t+ 1)agﬂt+1 _ t(t+2)kﬂt+3]2

¥ (V%60 — pp),

B —t(t+ 1)((1[5)”2 [O!HZﬂ—}— t(l‘+ 1){b2a3ﬂt +a2ﬂt+1 _ aﬁHZ} _ﬂt+3]

i b2 _ ,
(at+1 _ tﬂHl) [a¢+1ﬂ2+bgt(t+1)a2ﬂt+1 _t(t_i_z)kﬁprs]z Y ( o] pﬁ)
_ t(z‘—f—l)azﬁf“ -
Q77at+1ﬁ2+b2t(t+1)azﬂt+1 _t(t+2)kﬂt+33/(b Go—ﬂﬂ),

Showing that Kj,’f is homogeneous polynomial in (/) of degree 2.
Thus, we can have following;

Corollary 2. A Douglas space of second kind with special (@, p)-metric F = a +/j;—+,] is
conformally transformed to a Douglas space of second kind.

Case(iii). [fe=1and k= 1,weobtainF = a + g + /%1 In the case, 2K’ Z’ occupies the form
ZKZ =n+1)[1+ (tJFl)(ailﬁ)]a(Uobi*ﬁUi) +r+ra+rstratrs+rs+r7, (32)
where,

- (n+Dt(t+1)a?p
a4t + 1) — (it +2)p

bl(/)az - 60/})7

s}

DI =Pttt —2 Y andl 2%
,,Zzt(H— )1 =t tHt+2)p""p 7’2 ¥ (pa? — 0oB).
[ 1p 4 B2t (t+1)a?f — t(t+2)ﬁ!+2]




_ —(n+ Dt + D' (@ + L+ DAY ,
BT ) [t p 1 P+ Va2 — (it 2)f ] (&°60 —pB),

_ D2 (4 N i pT DR
(@1 — 1) [t % 4 B28(E 4+ 1B — t(t 4+ 2)p°)° s

74

_ 2 at4+2 (o} !
. tt+1)a?p 2 (o + (t+1)B) [0S — t(4t +7)0*aPp !

(at“ _ tﬁtﬂ) [a”‘“/}z +b2t(t+ 1)052/)’”1 _ t(t+2)ﬁ”3f
*4(1”1,52 +4t(t+2)ﬁl+3}yl(b260 7’0'6)’

¢ f+1 t+2
o= 1 ppitl i+1 2( 2 )(aﬂ) i+l 14372 [aHzﬂJraHlﬂz
(a 1) [d B+ 07+ 1)’ B Ht+2)"

+t(t+ 1)(b2a3ﬁl‘_aﬂt+2) + (t2+1+b2>a2ﬂt+] _ <t2+t+ 1)/}t+3:|yi(b260_pﬁ)7

B —t(t+1)a?p
At DA+ )2 — t(t+2)p

szi (bZO'O - pﬂ) :

7

Showing that K ﬁ;” is a homogeneous polynomial in (/) of degree 2.
Thus, we obtain the following;

Corollary 3. A Douglas space of second kind with special (a, f)-metric F = a+ p + /%l is
conformally invariant.

Case(iv).Ife=1,k=1andf=1,weobtainF = a + f + %Z Then, ZKZ;“ reduces in the form
ZKj;n = (% + 1) [1 + 2((1_1/3)](1(60bi — ﬁ(iz) + Uy + U + U3+ Uy + Us + Us + U7, (33)

Where,
__ 2t Dap _
T U2 — 3 (pa = oup).
12py2 :
Uy = br 53 (pa® — 60p),

[(1+20%)a? — 357

—2(n+1)a*(a + 28)
(a2 = p*)[(1 + 202) a2 — 3]

bi (bzl’o - pﬁ)a

Us =

2 20 32 9pa3),2
Uy = ba (a3+2aﬁ o — 2 )]/ zyi(bztio—ﬂﬂ)v
pla = 7)1+ 2)ae — )

Conformal

transformation

of Douglas
space
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2
v —2a°(a + 2B) > [30%a — (1107 + 4)a2ﬂ2
plo* = ) [(1+20%) o — 34°]
+128']y (b0 — pp),
2a°
(o~ ) [(1+ 26)e — 397
—aﬁz — 3ﬁ3]yi (bz(fo - /)ﬂ)v
A
(20— 3

[(1+20%)® + (3+°)a?p

(b200 — pﬂ) .

U; =

Showing that Kj;” is a homogeneous polynomial in (/) of degree 2.
Thus, we can have the following;

Corollary 4. A Douglas space of second kind with first approximate Matsumoto metric
F=a+p+ %2 is twariant under conformal change.
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