
A dynamic analysis of a prey–
predator population model with

a nonlinear harvesting rate
Nadia Mohdeb

Applied Mathematics Laboratory, University of Bejaia, Bejaia, Algeria

Abstract

Purpose – In this article, the author discusses dynamical behaviors of a prey-predator population model with
nonlinear harvesting rate and offers a mathematical analysis of the model.
Design/methodology/approach – The design is by using modelization of populations interaction,
qualitative theory of ordinary diff�erential equations, bifurcations analysis, invariant center manifolds theory
and Dulac’s criterion.
Findings – The author studies the stability of solutions and the existence of periodic solutions in the model,
and proves the existence of some invariant sets and the production of a transcritical together with a saddle-
node bifurcation.
Practical implications – The author studies the effects of harvesting on the persistence and extinction
properties and its influence in the perspectives of economic views.
Originality/value – The authors considers a predator–prey model with a new nonlinear form of harvesting
rate. The author’s intention is tomake conceptual adjustments to awell-knownpredator–preymodel in order to
incorporate the effects of harvesting.

Keywords Stability, Forward bifurcation, Persistent and permanent, Harvesting, Limit cycle,

Strong and center manifolds

Paper type Research paper

1. Introduction
Many researchers are interested to the dynamic of predator-prey interactions models, and
have investigated the processes that affect it [1–14]. The interaction between the predator
and prey species can be modeled by the classical Lotka–Volterra model [15]. When the prey
species obeys the logistic growth rate, this model becomes

_x ¼ xr 1� x

k

� �
� axy;

_y ¼ caxy� dy:

8<
: (1)

where x represents the size of prey population and y represents the size of predator
population. Parameters a, r, k, c and d are assumed to be positive values, where

a presents the rate of predation, such that in the presence of the predator, the prey species
decreases at a rate proportional to the functional response ax;
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c denotes the factor of the efficiency of predation which divides a maximum per capita
birth rate of the predators into a maximum per capita consumption rate;

d is the death rate of the predator which decreases exponentially, in the absence of
the preys;

r is the maximum specific growth rate of the prey which grows logistically in the absence
of the predator species and

k denotes the environmental carrying capacity with which the prey grows logistically in
the absence of the predation.

The persistence and extinction properties of a large marine ecosystem are not only
dependent on the interspecific interaction between the marine species but it is also dependent
on the external environment factors. To enrich model (1), many researchers modify the
nonlinear functional response function, adding some other elements like pollution, toxicity,
harvesting, age of the species, refuge, etc. [2, 5–10].

In the recent decades, human ambitions seem to be endless, and the global modernization
and urbanization foment the increasing human demands in searching more food and
resources. However, the ongoing civilization and urbanization have expedited the process of
exploitation of natural resources and altered the environment. Humans harvest the preys and
the predators for the purpose of private consumption and commercial reasons. Furthermore,
in the recent years, there is a substantial growth of global concerns on the impact of
harvesting activities on organisms and ecosystems.

Several forms and types of harvesting in prey–predator models are already being
studied; researchers have added terms to the prey or predator density like constants [16];
linear functions; functions that are linear if the density of the predator is bellow a switched
value and constant otherwise [10]; functions of the form QiFixi= Qi þ Fixið Þ; i ¼ 1; 2
where Qi and Fi are constants and xi, i 5 1, 2 are the sizes of prey and predator
populations, respectively [17], and recently by incorporating the Heaviside function
[18]. The most common one of these harvesting forms is a nonzero constant or a linear
harvesting rate. Models studied with a linear or constant harvesting rate exhibit far
richer and complex dynamics compared to the models with no harvesting. Hu and Cao
[6] argue that nonlinear harvesting is more realistic and reasonable than modeling
constant-yield harvesting and constant effort harvesting. They consider a predator–
prey system with a nonlinear Michaelis–Menten type of predator harvesting and
demonstrate the dynamical complexity of the system with this type of harvesting
effect.

Apparently, the above types of harvesting rates have their own advantages as well as
disadvantages in the award of the harvest in the real world. This background serves as the
motivation for the present paper; in this work, we consider a predator–prey model with a
new nonlinear form of harvesting rate. Our intention is to make conceptual adjustments to a
well-known predator–prey model in order to incorporate the effects of harvesting. In the
present work, we take the assumption of a prey and a predator dependent harvesting rate
one step further to incorporate biological and economic realism in ourmodeling framework.
This kind of nonlinear harvesting is more realistic and reasonable than the model with
constant-yield harvesting and constant effort harvesting. It can be thought as a supplement
to existing literature on the dynamics of this system, since there is little literature involved
in nonlinear type harvesting for the system up to now. Taking system (1) as our baseline
model, we assume that harvesting takes place, and both the prey and the predator are under
harvesting. The effect of harvesting on the species is assumed to be different and is
examined to make further speculations on the persistence and extinction properties. We
introduce harvesting nonlinear functions H 1 xð Þ of the prey and H 2 yð Þ of the predator to
model (1) for discussing its dynamical characteristics. We then consider the following
differential system
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_x ¼ xr 1� x

k

� �
� axy� αH 1 xð Þ;

_y ¼ caxy� dy� βH 2 yð Þ;

8<
: (2)

where α and β are positive parameters related to the harvesting effort. We investigate the
existence and stability of multiple equilibria, bifurcations and study the effects of harvest on
the dynamics of the predator–prey model (2). The model possesses a varied dynamic.

This paper is organized as follow. In section 2, we provide the formulation of the model
whichwewill study here. Basic results are given in section 3; we present the boundedness and
the invariance of the model considered. We then study the existence of multiple equilibria,
their types and their local and global stability, the permanence and persistence of the model,
bifurcations and existence of periodic solutions, especially existence of limit cycles for the
model. In section 4, we give numerical simulations to illustrate the established results.
Concluding remarks are presented in section 5.

2. Model formulation
Considering prey–predator model (2), we suppose that harvesting function of the prey in
system (2) is H 1 xð Þ ¼ x2 and harvesting of the predator is cubic H 2 yð Þ ¼ y3. Moreover, the
prey equation is an extended version of the logistic equation. Model (2) is

_x ¼ xr 1� x

k

� �
� axy� αx2;

_y ¼ caxy� dy� βy3:

8<
: (3)

The harvesting function of the prey is quadratic and can be added to the logistic term, and the

first equation becomes _x ¼ x r− x
γ

� �
− axy− αx2, where γ is a real parameter, but because of

the great biological interest of harvest functions and as the objective of this work is to study
and examine the effects of the parameter alpha, related to harvesting effort, in the widely
studied model (1), the logistic and harvesting terms are written separately.

We can show that solutions of system (3) starting from positive initial conditions are
positive and forward bounded. Let

x0 > max
r

α1

;
d

ca

� �
:

Then, D ¼ x; yð Þ∈R3R; 0 < x < x0; 0 < y <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
β cax0 − dð Þ

qn o
is a positive invariant set

for system (3).

3. Preliminary results
3.1 Existence of equilibria
In this section, we inspect the existence of all equilibria of model (3). Their existence and
number depend principally on the harvesting rates. Because of their biological meaning, we
will only study and explore the positive equilibria. We denote α1 ¼ αþ r

k
, d1 ¼ d− car

α1

and Δ ¼ c2a4

α2
1

− 4βd1.

Theorem 3.1. According to the values of the harvesting parameter β and the mortality rate
d of the predator species in the absence of the prey, system (3) has the following coexistence
positive equilibria:
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In the case β < c2a4

4d1α21
and d1 > 0, or in the case d1 < 0, system (3) admits three positive equilibria:

0; 0ð Þ, r
α1
; 0

� �
and x2; y2ð Þ where

x2 ¼ r

α1

� a

α1

y2 and y2 ¼
−ca2

α1
þ ffiffiffiffi

Δ
p

2β
:

If β ¼ c2a4

4d1α21
, system (3) has two equilibria: 0; 0ð Þ and r

α1
; 0

� �
. When β > c2a4

4d1α21
and d1 ≥ 0 there

exist two positive equilibria: 0; 0ð Þ and r
α1
; 0

� �
.

Proof. An equilibrium point of system (3) satisfies

xr 1� x

k

� �
� axy� αx2 ¼ 0;

caxy� dy� βy3 ¼ 0:

8<
: (4)

As d is positive, we get by equations x5 0 or y5 0, two equilibria 0; 0ð Þ and r
α1
; 0

� �
. On the

other hand, equation

r 1� x

k

� �
� ay� αx ¼ 0 (5)

gives x ¼ r
α1
− a

α1
y. Solutions of equation

cax� d � βy2 ¼ 0 (6)

are given based on values of d1 and β compared to that of c2a4

4d1α21
. More precisely, it follows from

equations (5) and (6): two equilibria x1; y1ð Þand x2; y2ð Þeither if β < c2a4

4d1α21
and d1 > 0 or if d1 < 0;

one equilibrium point x1; y1ð Þ if d1 5 0, where

x1 ¼ r

α1

� a

α1

y1; y1 ¼
−ca2

α1
� ffiffiffiffi

Δ
p

2β
; (7)

one equilibrium point x1;
−ca2

2α1β

� �
if β ¼ c2a4

4d1α21
; and none if β > c2a4

4d1α21
and d1 > 0.

Remark 3.1. The origin represents an equilibrium when both the prey and predator

population die out and extinct, and the point r
α1
; 0

� �
represents the equilibrium when the prey

population survives in the absence of the predator population. The nonlinear harvest strategy
applied to model (3) leads to the predator extinct when the harvesting rate conditions satisfy

β≥ c2a4

4d1α21
and d1 ≥ 0. In all other cases, the prey and predator coexist.

3.2 Nature and stability of equilibria
In this section, we provide the nature of positive equilibria of system (3), and their stability
will be discussed.

First, we can show that the equilibrium point r
α1
; 0

� �
is a saddle, locally unstable, if d1 < 0,

and a locally stable node when d1 > 0. However, if d1 5 0, then r
α1
; 0

� �
is a degenerate
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equilibrium point, and further study is needed. In this case, in the following theorem we will

study the stability of the two equilibria, origin and r
α1
; 0

� �
and describe the behavior of the

solutions of (3) near this last equilibrium point.

Theorem 3.2. Equilibrium (0,0) is unstable for system (3). If d1 5 0, equilibrium point
r
α1
; 0

� �
is a saddle-node, with two hyperbolic sectors and a parabolic one.

There exists an invariant strong unstable manifold Wu tangent at point
r
α1
; 0

� �
to the x-axis on

which the behavior of system (3) is repulsive.
On one side ofWu, for each point x; yð Þ, there exists a center manifoldWc x; yð Þ tangent at point

r
α1
; 0

� �
to the line y ¼ −

α1
a
xþ r

a
, and on the other side, all the center manifolds coincide and are

tangent at point r
α1
; 0

� �
to the same line.

Proof. The eigenvalues of the Jacobian matrix associated with system (3) at the
equilibrium point 0; 0ð Þ are r > 0 and −dð Þ < 0, and then the origin is an unstable saddle.

Now we suppose that d15 0. First we translate the equilibrium point r
α1
; 0

� �
to the origin

by the change of variables X ¼ x− r
α1
and Y 5 y. System (3) becomes

_X ¼ −rX � ar

α1

Y � aXY � α1X
2;

_Y ¼ caXY � βY 3:

8<
:

By using the transvection u ¼ X þ r
α1
Y , v 5 Y and by reversing the time τ 5 �t, we get

u0 ¼ ru� a� ca2

α1

� �
uvþ α1u

2 � ca3

α2
1

v2 � βa

α1

v3;

v0 ¼ −cauvþ ca2

α1

v2 þ βv3;

8>>><
>>>:

(8)

where (0) denotes d
dt

� �
. By exchanging the roles of u and v in system (8) by setting x ¼ v,

y ¼ u, we obtain

x0 ¼ −cax yþ ca2

α1

x2 þ βx3;

y0 ¼ ry� a� ca2

α1

� �
x yþ α1y

2 � ca3

α2
1

x2 � βa

α1

x3:

8>>><
>>>:

(9)

We denote A x; yð Þ ¼ −caxyþ ca2

α1
x2 þ βx3. Equation y0 ¼ 0 gives

α1y
2 þ r � a� ca2

α1

� �
x

� �
y� ca3

α2
1

x2 � βa

α1

x3 ¼ 0: (10)

The solutions of equation (10) depend on the sign of

Δ
� ¼ r2 þ aþ ca2

α1

� �2

x2 � 2r a� ca2

α1

� �
xþ 4aβx3:
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Because x; yð Þ is supposed to be in the neighborhood of the origin, then since x is smallest than

r2, we obtain Δ
�
> 0 and equation (10) has two solutions:

y1 xð Þ ¼ 1

2α1

− r � a� ca

α1

� �
x

� �
�

ffiffiffiffi
Δ
�

q !
;

and

y2 xð Þ ¼ 1

2α1

− r � a� ca

α1

� �
x

� �
þ

ffiffiffiffi
Δ
�

q !
:

We can show that y1 is excluded and y ¼ y2. By the third-order Taylor development, we get

A x; y2 xð Þð Þ ¼ ca2

α1

x2 þ β � c2a4

rα2
1

� �
x3 þ o x3

� �
:

Since ca2

α1
> 0, following the similar arguments in Ref. [19] which is based on removing of flat

terms in order to get the C∞ normal forms by using the homotopic method, we conclude that
origin is a saddle-node for system (9). It follows from the stable manifold theorem [20, 21] that

(1) there exists an invariant strong unstable manifoldWu tangent at origin to the y-axis
such that on Wu, system (9) is analytically conjugate to y0 ¼ ry and the behavior is
repulsive;

(2) for any x0; y0ð Þ, if x0 > xWu
, where xWu

is the abscissa of Wu at the point whose
ordinate is y0, it passes a center manifold Wc tangentially at origin to the x-axis. On

Wc, system (9) is C∞-conjugate to x0 ¼ x2 þ β− c2a4

rα2
1

� �
x3. If x0 < xWu

, all the center

manifolds coincide and are tangent at origin to x-axis and

(3) system (9) is C∞-conjugate to

x0 ¼ x2 þ β � c2a4

rα2
1

� �
x3;

y0 ¼ ry;

8><
>:

and C0-conjugate to

x0 ¼ x2;
y0 ¼ y:

	

Going back to the coordinates (x, y) by: inverting transvection; exchanging the roles of u and v;
translation and by change time, we obtain the result.

Remark 3.2. In the proof of theorem 3.2, more details are given about the behavior of

solutions near the equilibrium point r
α1
; 0

� �
.

Because that the coordinates y2 is positive if and only if d1≤ 0, equilibrium point x2; y2ð Þ is not
biological meaningful if d1 > 0; we note that x2 remains positive for all values of the
parameters. We will show in the following theorem that stability and nature of equilibrium
x2; y2ð Þdepend essentially upon of the values of the mortality rate d of the predator and of the
harvesting parameters α and β.

AJMS



Theorem 3.3. The equilibrium point x2; y2ð Þ is locally unstable if d1 ≥ 0, and it is either a

linear center, a focus or a node if d1 < 0; it is locally stable if d1 < 0 and 1− ca
α1

� �
≥ 0.

Proof.We assume thatΔ≠ 0. The Jacobian matrix of system (3) at a point x; yð Þ, such that
x ¼ r

α1
− a

α1
y, is given by

J x;yð Þ ¼
�r þ ay �a

r

α1

� a

α1

y

� �

cay ca
r

α1

� a

α1

y

� �
� d � 3βy2

0
BBB@

1
CCCA:

We first assume that d1 < 0. We have

det J x;yð Þ
� � ¼ r � ayð Þ −

ca

α1

r � ayð Þyþ d þ 3βy2 þ ca2

α1

y

� �
:

Wedenote I x; yð Þ ¼ 2 ca2

α1
yþ d1 þ 3βy2. Its sign depends on that ofΔ1d c2a4

α2
1

− 3βd1.We have

Δ1 5 Δ þ βd1, it is positive. This means that I x; yð Þ has two roots:

y ¼
−c2a4

α2
1

� ffiffiffiffiffiffi
Δ2

p

3β
and y ¼

−c2a4

α2
1

þ ffiffiffiffiffiffi
Δ2

p

3β
;

where Δ2d c2a4

α2
1

− 3βd1. We will compare y2 with respect to y. Suppose that y2 < y. Then

2
c2a4

α2
1

þ 3 −
ca2

α1

þ
ffiffiffiffi
Δ

p� �
<

ffiffiffiffiffiffi
Δ2

p
: (11)

By squaring, since−ca2

α1
þ ffiffiffiffi

Δ
p ¼ 2βy2, the left side of (11) is positive, and we getΔ < ca2

α1

ffiffiffiffiffiffi
Δ2

p
.

It follows by some calculus that �4βd1 < 0 which is absurd, and then I x2; y2ð Þ > 0.

Moreover, we can show that r� ay2 > 0; otherwise,
ffiffiffiffi
Δ

p
< ca2

α1
þ 2rβ

a
, and by squaring and

simplifications, we get d < −
r2β
a2

< 0 which contradicts the assumption. Hence x2; y2ð Þ is a
node, a center or a focus.

To study the stability of equilibrium x2; y2ð Þ, we look at

tr J x;yð Þ
� � ¼ r � ayð Þ −1þ ca

α1

� �
� d � 3βy2;

and it is easy to see that if 1− ca
α1
≥ 0, then x2; y2ð Þ is stable.

If d1 5 0, then x2; y2ð Þ ¼ r
α1
; 0

� �
and is, by theorem 3.2, a saddle-node.

In the following result, we use Dulac’s criterion [22] to show the nonexistence of limit
cycles in system (3).

Theorem 3.4. System (3) does not have a periodic solution and then it does not have a limit
cycle in

Dþ ¼ ðx; yÞ∈R3R; x > 0; y > 0f g:
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Proof. Consider a real-valued continuously differentiable Dulac function

hðx; yÞ ¼ 1

xy
;

for x > 0, y > 0 and denote

f ðx; yÞ ¼ xr 1� x

k

� �
� axy� αx2;

gðx; yÞ ¼ caxy� dy� βy3:

8<
:

We have

vðhf Þ
vx

x; yð Þ þ vðhgÞ
vy

x; yð Þ ¼ −
r

ky
� α

y
� 2βy

x
:

Since x > 0 and y > 0, then vðhf Þ
vx

x; yð Þ þ vðhgÞ
vy

x; yð Þ is not identically zero and is of one sign.

Therefore, system (3) does not have a closed orbit in Dþ.
We can now state results about the global stability of equilibria of model (3).

Theorem3.5. 1) If d1 < 0, then the positive equilibrium point x2; y2ð Þ is asymptotically stable;
it is globally asymptotically stable in Dþ.

2) If d1 > 0, then the equilibrium point r
α1
; 0

� �
is globally asymptotically stable

in Dþ ∪ Rþ 3 0f gð Þ� �
.

Proof. It follows from theorem 3.4 that when d1 < 0, the equilibrium point x2; y2ð Þcannot be
a center for system (3). By using in addition theorem 3.3, we deduce that x2; y2ð Þ is locally
asymptotically stable.

Moreover, we know by theorem 3.1 that there is not any other equilibrium of system (3)
than x2; y2ð Þ in Dþ, which is positively invariant for system (3). It follows from theorem 3.4
that any trajectory of system (3) in Dþ tends to x2; y2ð Þwhen t tends to positive infinity, and
the first part of the theorem is shown.

We know that if d1 > 0, then equilibrium point r
α1
; 0

� �
is a stable node. It is, except the

originwhich is instable, the unique equilibrium point of system (3) inDþ ∪ Rþ 3 0f gð Þ, which
is positively invariant for system (3); the direction of vector fields allows us to conclude the
second part of the theorem.

Theorem 3.6. System (3) is permanent and persistent if and only if d1 < 0.

Proof. We consider in the case d1 < 0, the points:

Ad x0; y0ð Þ a point of the curve y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
β cax− dð Þ

q
such that d

ca
< x0 < x2;

B the point of intersection of the horizontal line passing through A with the line
y ¼ �−r

ak
− α

a

�
xþ r

a
;

E the point of intersection of the vertical line through B with the curve y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
β cax− dð Þ

q
;

M the point of intersection of the horizontal line through Ewith the line y ¼ �−r
ak
− α

a

�
xþ r

a
;

N the point of intersection of the vertical line throughMwith the curve y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
β cax− dð Þ

q
and
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C the part of the curve y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
β cax− dð Þ

q
connecting the points M and A.

Let D1 be the region of the plan delimited by the straight segments AB, BE, EM andMN and
by the curved line C. We show that D1 is positively invariant compact for system (3). Since in
the case d1 < 0, the point x2; y2ð Þ is the unique equilibrium in the first quadrant of the plan and
using, according to theorem 3.5, the fact that x2; y2ð Þ is globally asymptotically stable we can
then conclude.

3.3 Bifurcation results and analysis
We present in this part the different bifurcation diagrams of multiple equilibria of system (3).
We examine the effects of the harvesting parameter on the prey and predator species by
valuing the parameters. We will theoretically choose the parameters used in the simulations
according to the criterion: check appropriately the obtained analytical results in each case and
show numerically the acuteness of the obtained stability conditions. Note that model (3)
exhibits a forward bifurcation.

Example 3.1. Choosing d5 0.2, r5 0.1, k5 0.5, c5 1.8, a5 0.5 and β5 0.1, we get d1≤ 0

for α ≤ 0.25. The two equilibria (x2, y2) and
�

r
α1
; 0
�
coincide at the forward bifurcation value

α 5 0.25, as shown in Figure 1.

Example 3.2. Using the following parameter values d5 0.2, r5 0.1, k5 0.5, c5 1.8, a5 0.5

and β5 0.1, we get d1 ≥ 0 and β > c2a4

4d1α21
for 0.25 ≤ α (Figure 2 ). The positive equilibrium does

not exist because y � 2 becomes negative (x2 is still positive).

If α is less than the value giving d1 5 0, an unstable equilibrium and a stable one exist in
model (3) and the prey and the predator coexist (Figure 1). The density of prey and predator

Figure 1.
A part of the

bifurcation diagram for
model (3) with x2 and

r
α1

vs α. The solid line
presents the curve of

the prey with
coexistence

equilibrium (x2, y2), and
the dotted line

indicates the curve of
the prey with
coexistence

equilibrium
�

r
α1
; 0
�
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species decrease severely in result of being harvested showing that the harvesting activities
have a great impact on the populations. If the harvesting rate parameter α exceeds this value,
system (3) does not have positive equilibria (Figures 1 and 2), and there is a predator
extinction. The predator population encounter extinction due to the high level of harvesting
activities on the predator species, and only the prey population can persist; the prey
population increases, this is because the increasing of harvesting activities on predator
suppress the predator population and consequently reduces the predation activities on the
prey population.

The model exhibits a transcritical bifurcation. This bifurcation is ecologically important
and will lead to the potentially dramatic variation of the system dynamics. Existence of such
kinds of bifurcations indicates that the over exploitation of resource will cause extinction of
the species. The predators tend to extinction for some values of harvesting rate while the
predators and prey will coexist for some other values of harvesting rate, which is one of the
most exciting features in the ecosystem.

4. Numerical simulation
Wegive in this section some interesting numerical examples for system (3); to illustrate better
the behavior of the trajectories near the equilibria, we represent the phase portraits in the half-
plane ðf x; yÞ∈R3R; x > 0g. For the graphical representations, we consider different
contexts by considering the different values of the parameters of the model.

Example 4.1. Setting parameter values d5 0.2, r5 0.1, k5 0.5, c5 1.8, a5 0.5, β 5 0.1
and α 5 0.1, we get d1 5 �0.1 < 0. The equilibrium point (x2, y2) exists and is positive and

globally asymptotically stable (Figure 3 ). In this case,
�

r
α1
; 0
�
is an unstable equilibrium point.

Example 4.2. Setting d5 0.2, r5 0.1, k5 0.5, c5 1.8, a5 0.5, β5 0.1 and α5 0.25, we get

d15 0. The equilibrium point (x2, y2) coincides with the equilibrium
�

r
α1
; 0
�
giving a saddle-node

point and a forward (a transcritical) bifurcation occurs (Figure 4 ); in this case, there is no other
positive equilibria. A forward bifurcation diagram is illustrated in Figures 1 and 2. The center
manifold of the saddle-node point divides the plan into two regions. The region above is the basin

of attraction for
�

r
α1
; 0
�
.

Figure 2.
The bifurcation
diagram for model (3)
with x2, and

r
α1
vs α,

after the forward
bifurcation. The solid
line presents the curve
of the prey with
coexistence

equilibrium
�

r
α1
; 0
�
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Figure 3.
The phase portrait of

system (3) when (x2, y2)
is globally

asymptotically stable

and
�

r
α1
; 0
�
is unstable

Figure 4.
The phase portrait of

system (3) when (x2, y2)

meets
�

r
α1
; 0
�
at a

saddle-node
equilibrium
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prey–predator
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Example 4.3. Using the following parameter values d5 0.2, r5 0.1, k5 0.5, c5 1.8, a5 0.5,
β5 0.1 and α5 0.7, we obtain d15 0.1 > 0. The positive equilibrium point (x2, y2) does not exist

anymore, and there is no positive equilibria other than
�

r
α1
; 0
�
; this last equilibrium is stable.

The phase portrait of model (3) is shown in Figure 5.

5. Conclusion
In this model, we discussed the effects of nonlinear harvesting in a predator–prey system in
which both the species are harvested. Qualitative analysis reveals that harvesting plays an
important role in determining the dynamics and bifurcations of the model. The equilibria of
model (3) are examined and the stability is discussed, and the parameters α and β in nonlinear
harvesting term affect the number and stability of equilibria.We showed that there occurs an
interesting bifurcation which is a forward bifurcation. Moreover, we showed that model (3)
exhibits for some values of the parameters, a varied dynamic, like the permanence and the
persistence of the model; a unique positive globally asymptotically stable coexistence
equilibrium, connecting with a coexistence of positive saddle equilibrium point; saddle-node
equilibria and extinction of two equilibria. We showed by the Bendixson–Dulac criterion that
model (3) has no periodic solutions, and then nonexistence of limit cycle is proved. Finally, a
numerical simulation is taken to verify the results we obtained.

Li et al. [10] have studied a predator–prey model with nonsmooth switched harvest on the
predator, their model presents rich dynamics, whereas the fractional order derivative of the
model has an acceleration effect in the dynamics [14]. Naik et al. [12] proved that a discrete-
time prey–predator model could exhibit complicated bifurcation phenomena, including
period-doubling, Neimark-Sacker and strong resonance bifurcations. Several interesting
results (stability of the model, boundedness of the solutions, chaos, etc.) are also obtained by

Figure 5.
The phase portrait of
system (3) with a stable

equilibrium
�

r
α1
; 0
�

AJMS



considering three and four dimensional fractional systems [3, 4, 13]. In Refs. [3, 4], the authors
proved that the fractional power of the derivative has a significant effect on the dynamic
process. Compared with those existing results, our study can be thought as a supplement to
model (1). The impact of constant and linear harvesting on system (1) have been extensively
studied, but how do nonlinear harvesting affect the dynamic of system (1) is not yet clear.
Moreover, nonlinear type harvesting is more realistic and better than the constant and the
linear effort harvesting from biological and economic points of view. From the numerical
simulations, it may be concluded that low level of harvesting activities leads to the
coexistence of the system, but conversely high level of harvesting activities eradicates the
entire predator population in short period of time andwill lead to the extinction of the system.
Illegal fishing and over harvesting on fisheries should be avoided to allow future generations
to benefit frommarine resources. However, rational initiatives should be conducted to ensure
that harvesting levels are at moderate levels in order to protect the entire aquatic ecosystem
from collapse. From a practical standpoint, we would like to design harvesting policies to
keep the predators and prey from extinction. According to the nature of the system, the
decision-makers of a company can develop the best harvesting strategy to ensure the
sustainable development of the ecosystem. This research will be useful for further
understanding the dynamic complexity of ecosystems when there is the nonlinear type
harvesting effect on prey and predator populations.
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