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Abstract

Purpose — In 1979, P. Wintgen obtained a basic relationship between the extrinsic normal curvature the
intrinsic Gauss curvature, and squared mean curvature of any surface in a Euclidean 4-space with the equality
holding if and only if the curvature ellipse is a circle. In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L.
Vrancken gave a conjecture of Wintgen inequality, named as the DDVV-conjecture, for general Riemannian
submanifolds in real space forms. Later on, this conjecture was proven to be true by Z. Lu and by Ge and Z.
Tang independently. Since then, the study of Wintgen’s inequalities and Wintgen ideal submanifolds has
attracted many researchers, and a lot of interesting results have been found during the last 15 years. The main
purpose of this paper is to extend this conjecture of Wintgen inequality for bi-slant submanifold in conformal
Sasakian space form endowed with a quarter symmetric metric connection.
Design/methodology/approach — The authors used standard technique for obtaining generalized Wintgen
inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric
metric connection.

Findings — The authors establish the generalized Wintgen inequality for bi-slant submanifold in conformal
Sasakian space form endowed with a quarter symmetric metric connection, and also find conditions under
which the equality holds. Some particular cases are also stated.

Originality/value — The research may be a challenge for new developments focused on new relationships in
terms of various invariants, for different types of submanifolds in that ambient space with several connections.
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1. Introduction

In 1980, I. Vaisman [1] introduced the concept of conformal changes (or deformation) of
almost contact metric structures as follows: Let M be a (2 + 1)-dimensional manifold
endowed with an almost contact metric structure (¢, &, , £). A conformal change of the metric
g leads to a metric which is no more compatible with the almost contact structure (¢, &, ).
This can be corrected by a convenient change of ¢ and n which implies rather strong
restrictions. Using this definition, a new type of almost contact metric structure (¢, &, 1, g) ona
(2n + 1)-dimensional manifold M which is said to be a conformal Sasakian structure if the
structure (¢, &, 1, g) is conformal related to a Sasakian structure (&, &N, 9).

The Wintgen inequality is a sharp geometric inequality for surfaces in four-dimensional
Euclidean space involving Gauss curvature (intrinsic invariants), normal curvature and
square mean curvature (extrinsic invariants). P. Wintgen [2] proved that the Gauss curyature
K, the normal curvature K- and the squared mean curvature ||||” for any surface M in [E*
satisfy the inequality [3] as follows:

17| 2 K + K|

and the equality holds if and only if the ellipse of curvature of /\~/12 in E*isa circle. Later, it was

extended by I. V. Gaudalupe ef al. [4] for arbitrary codimension 7 in real space forms
~ (m+2)

M (¢) as follows:

|H|* +c>K + |K*|.

In 1999, De Smet, Dillen, Verstraelen and Vrancken [5] conjectured the generalized Wintgen
inequality for submanifolds in real space form. The conjecture is known as DDVV conjecture.
It had been proved by Lu [6] and by Ge and Tang [7] independently. In 2014, Ion Mihai [8]
established such inequality for Lagrangian submanifold in complex space form. They
provided some applications and also stated such an inequality for slant submanifolds in
complex space forms. However, the year 2014 is not the stopping point in investigating
Wintgen inequality and some additional steps have been taken in the development of the
theory. In fact, many remarkable articles were published in the recent years and several
inequalities of this type have been obtained for other classes of submanifolds in several
ambient spaces for example, for statistical submanifolds in statistical manifolds of constant
curvature [9]; for Legendrian submanifolds in Sasakian space forms [10]; for submanifolds in
statistical warped product manifolds [11]; for quaternionic CR-submanifolds in quaternionic
space forms [12]; for submanifolds in generalized (x, p)-space forms [13]; for totally real
submanifolds in LCS-manifolds [14] and so on. For more details, see [15].

In the present article, we obtain the generalized Wintgen inequalities for conformal
Sasakian space forms. The equality case of the main inequality is investigated. Lastly, we
discuss such inequality for various slant cases as an application of the obtained inequality.

2. Preliminaries
2.1. Sasakian manifold ~

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact metric
manifold [16]if there exist a tensor ¢ of type (1, 1), a vector field & (structure vector field) and a

1-form 7 on M satisfying
X ==X +nX)& n() =1, @
eE=0, 1°6=0, g(X,&) =n(X), 2.2)



and 2(eX, oY) = g(X, ¥) — n(X)n(Y), 3

forany X,Y € F(TM). The two-form @ is called the fundamental two-form in M and the
manifold is said to be a contact metric manifold if

O = dy.

A Sasakian manifold is a normal contact metric manifold. In fact, an almost contact metric
manifold is Sasakian manifold if and only if we have

(Vxe)Y =X, Ve —n(V)X,

for any X, Y € [(TM), where V denotes the Riemannian connection.

A plane section 7 in 7, M is called a ¢-section if it is spanned by X and ¢X, where Xis a
unit tangent vector orthogonal to £ The sectional curvature of a ¢-section is called a
@-sectional curvature. A Sasakian manifold with constant ¢-sectional curvature ¢ is said to be
a Sasakian space form and denoted by M (c). The curvature tensor of a Sasakian space form
M(c) is given by [16].

(c+3)

R vz = pew 2x g 2yvy + @ rx

= nX)Y + @Y, Z)n(X) — (X, Z2n(Y))é — g(eY,Z)pX
+ 8(X, Z) oY + 22(¢X,Y)@Z,

forany X, Y, Z e F(TM).

2.2. Conformal Sasakian manifold ~
A (2n + 1)-dimensional Riemannian manifold M endowed with the almost contact metric
structure (¢, 4, &, g) called a conformal Sasakian manifold if for a C*° function

fM-R

there exists [3].

Z=exp(fg, &= (exp(-f))E,
n=(exp()n. e=¢

such that (M, P, &,2) is a Sasakian manifold.
Let V and V denote connections of M related to metrics g and g, respectively. Using
Koszul formula, we derive the following relation between the connections V and V:

ViY = ViV + % {0X)Y +o(YV)X — g(X,Y)o},

forany X, Y e (M) so that @(X) = X(f) and @™ is vector field of metrically equivalent to one
form of w, ie. gl@® X) = w(X). The vector field @* = grad fis called the Lee vector field of
conformal Sasakian manifold M.

The (21 + 1)-dimensional conformal Sasakian manifold with constant sectional curvature
¢, denoted by M(c), is called a conformal Sasakian space form and its curvature tensor is
given by [3].
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(RXNZW) = explr) {52 (&Y. 202X, W) - eX. 20V W)

+ L @ @e . W) — (D2, W)

4
+8(X,2)g(& Win(Y) —g(Y,Z)g(&, W)n(X)
—8(eY,Z)g(eX, W) — g(eX,Z)g(eY, W) 2.4)

- 20X Ve, W) | = 5 (BX.2)e(Y. W)

—-BY,2)gX,W)+B(Y,W)g(Y,Z)—B(X,W)g(Y,Z))

1
— ol (¢(X. 2)g(Y. W) - g(X, W)g(Y Z)),
forany X, Y, Z, W, w,£€T(TM), where B:==Vo 10 Q@ w.

2.3. Quarter-symmetric metric connection
Let M be an (2 + 1)-dimensional Riemannian manifold with Riemannian metric g and V be
the Levi-Civita connection on M. Let V be a linear connection defined by [17].

VyY = ViV + AA(Y)X — Ag(X, V)V, 25)

forany X, Y € F(M), A; and A, are real constants and Vs the vector field on M such that
AMX) = g(X,V), where 4 is 1-form. If %g = (, then V is known as quarter-symmetric metric
connection and %g #0, then V is known as quarter-symmetric non-metric connection.
Decomposing the vector field V on M uniquely into its tangent and normal components V7

and V*, respectively.
The special cases of (2.5) can be obtained as follows:

(1) when A; = A, = 1, then the above connection reduces to semi-symmetric metric
connection and

(2) when A; = 1and A, = 0, then the above connection reduces to semi-symmetric non-
metric connection.

For any X, Y,Z, W e'(T M), the curvature tensor with respect to Vis given by
R(X,Y)Z =VxVyZ = VyVyZ — Vg Z. 2.6)
On using (2.5), the curvature tensor (2.6) takes the form [17] as follows:

RX, Y, Z,W) =RX,Y,Z,W)+ ha(X,2)g(Y, W) — ha(Y,Z)g(X, W)
+ Aoa(Y, W)g(X, Z) — Aoat(X, W)g(Y, Z) + Ao(Ay — Ag) @)
X, Z)B(Y, W) = Ao(Ay — A2)g (Y, Z)p(X, W),

where a and g are (0, 2)-tensors and defined as follows:

a(X, ) = (Vxd) (V) ~ MACAY) + S2g(X, VIAW),



and
AV
p0x ) =2 g ) 4 a00av),
The curvature tensor of conformal Saasakian space form M (c) with a quarter-symmetric
connection V is given by

s(Rax.vZW) = exp(f){# (¢(V,2)g(X, W) ~ (X, 2)g(Y, W)

* % (nX)n(Z)g(Y, W) —n(Y)n(Z)g(X, W)

+ 80X, 2)(& Win(Y) ~ 2. 2)g(& Wyn(X)
- g(¢YaZ)g(¢X7 W) _g(QDX,Z)g(gDYa W)

~ 26(¢X, V)g(eZ, W)} 5 (BX, 2)g(Y, W) o5
—-BY,2)gX,W)+B(Y,W)g(Y,Z)—B(X,W)g(Y,Z)) .

— P (e(X. 2080V, W) ~g(X, W)a(V.2)
+MaX,2)g(Y, W) — Ma(Y,2)g(X, W)

+ Mg (X, 2)a(Y, W) — Aog (Y, Z)a(X, W)
Aol — Ag(X.Z)BY. W)

— NolAs — AV Z)BX. D).

For simplicity, we have put #(@) = @ and #(8) = b.

Let M be an m-dimensional submanifold of a (2z + 1)-dimensional conformal Saasakian
space form M (c). We consider the induced quarter-symmetric connection on M represented
by V' and the induced Levi-Civita connection denoted by V. Let R and RM be the

curvature tensors of V' and VM. Then, the Gauss equation is given by

ﬁ(X, Y.ZW) =RX,Y,Z,W)—gW(X,W),h(Y,Z))+g(Y,W),h(X,Z))
+ (A1 — No)g (WY, Z), V" )g(X, W) 29
+ (AZ - Al)g(h(XaZ)7 VL)g(Yv W)7

where / is the second fundamental form of M in M with respect to V and defined as follows:
X, Y)=W(X,Y) - Ag(X, Y)V".

Here, /' is the second fundamental form of M in M with respect to V and g denotes the
Riemannian metric on M.

For any X e I'(T M), we can write ¢X = PX + SX, where the PX (respectively, SX) is the
tangential component (respectively normal component) of ¢.X. If P = 0, then the submanifold
is anti-invariant and if S = 0, then the submanifold is invariant. The squared norm of P at
p € M is given as follows:
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Table 1.
Different types of
submanifolds

1P =& (¢eire), (2.10)
ij=1

where {e, . .., ¢, is any orthonormal basis of 7. M and p € M. The structure vector field &
can be decomposed as & = 7 + &4, where £7 and &+ are tangential and normal components
of &

The notion of bi-slant submanifolds was introduced by A. Carriazo ef al as a natural
generalization of CR, slant, semi-slant and hemi-slant submanifolds (see [18-20]). Recently,
S.Uddin and B.-Y. Chen studied bi-slant and pointwise bi-slant submanifolds for their warped
products in [21, 22]. A submanifold M of an almost contact-metric manifold M is called
bi-slant submanifolds, whenever we have

1) TM™ =Dy, @Dy, & () and
(2) QD'Dg] L Dgz and qDDgz 1 'Dgl

where Dy, and D,, are two orthogonal distributions of M with slant angle 6; and 6,
respectively. ~

Let M be a bi-slant submanifold of a conformal Sasakian space form M. We assume that
dim(M) = m = 2my + 2my + 1, where dim(Dy,) = m; and dim(Dy,) = mya. Let {ey, ...,
e = £} be an orthonormal basis of 7, M at p in M with

1,62 = sectiPey,. .. eom 1, 60m = S€CO1Pern, 1, €m, 11, €2m,+2 = S€CloPeoy, 11, . ..,
€2my+2my—15 €2my +2my = SeC92P32m1+2mZ—ly Comyrompr1 = &

from which we have [23] as follows:

2 .
20 N _ JcosOy, for 1=1,2,... 2m -1
g eein, ) = {cos202, for i=2m+1,...,2m + 2my—1.
Thus, we have

m

Zgz(zpei, ¢;) = 2{my cos’0y + my cos’6, }.

ij=1

In fact, semi-slant, pseudo-slant, CR and slant submanifolds can be obtained from
bi-slant submanifolds in particular. We can see the cases in the following Table 1:

The special case of slant submanifold are invariant and anti-invariant if § = 0 and 6 = 7,
respectively. The slant submanifold is said to be proper slant and proper bi-slant
submanifold, if 0 < # < §and 6; lies between 0 and .

SN M" Dy, Dy, 0, 0

(48] Bi-slant Slant distribution Slant distribution Slant angle Slant angle

()] Semi-slant Invariant distribution Slant distribution 0 Slant angle

3 Pseudo-slant Slant distribution Anti-invariant Slant angle z
distribution

) Contact CR Invariant distribution Anti-invariant 0 z
distribution

5) Slant Either Dy, = 0or Dy, =0 Either; =0, =0or 6, = 6,

#0




3. Main inequalities

In [10], Mihai discussed the generalized Wintgen inequality for Legendrian submanifolds in
Sasakian space forms. He also stated such an inequality for contact slant submanifolds in
Sasakian space forms. Thus, in this section, we obtain such an inequality in terms of the
invariant p,, (called normalized scalar-normal curvature) for bi-slant submanifolds of
dimension 7 in a (2 + 1)-dimensional conformal Sasakian space form M. Consider the local
orthonormal tangent frame {ey, ..., ¢,} of the tangent bundle 7M of M and a local
orthonormal normal frame {e,, 1, - . ., €2,,1} of the normal bundle 7+ M of M in M. At any
p € M, the scalar curvature 7 at that point is given by

T = Z R(el-,e]-,e]-,el»). (31)

1<i<j<m

The mean curvature H of submanifold is given by
1 m
=— (e, e).
H m 2 h(e;,e;)

Conveniently, let us put
h; = g(h(ei7 62'), 6,’),

foranyi,j={1,..,m}andr={m+1,...2n+ 1}.
We denote by K and R, the sectional curvature function and the normal curvature tensor
on M, respectively. Then the normalized scalar curvature p is given by [8].

2 _ 2 S ang). (32)

p =
m(m—1)  m(m—1), £=

In term of the components of the second fundamental form, we can express the scalar normal
curvature xq of M by the formula [8].

2
ED DS (ZWZ—%@) , 33)

1<r<s<2n-m+11<i<j<m \ t=1

and the normalized scalar normal curvature is given by [8].

%1)\/@ : 34

pM = Wl(Wl

Theorez% 3.1. Let M be an m-dimensional bi-slant submanifold in conformal Sasakian space
Sorm M(c) of dimension 2n + 1) endowed with a quarter-symmetric connection, then we
have

2 c+3 ¢—1  3(c-1)
putr < emin{T -t JEED,

(m1 cos*6; + my cos’60s) }

(35)

tr(B) 1 a b

JanLfHouH2 - {(AI +Ag) —+ As(A) — Ag) — —
m 4 m m

(As — Al)/l(H)}.
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Moreover, the equality case holds in the above inequality at a point p € M if and only if, with

respect to some suitable orthonormal basis {ej,...,e,} of TpM and {¢, ..
TjM, the shape operators S,y = 1, ..., 2n — m + 1, take the forms as follows:

w ¢ 0 ... 0
¢ uwp 0 .00
S = 0 0 u ... 0 ,
00 0 ...
My + ¢ 0 0 0
0 Hy—C 0 0
S, = 0 0 Ha 0
0 0 0 M,
s 0 0 ... 0
0 pw 0 ... O
53: 0 0 Hg - 0 s 54:"‘:52%—m+1:07
0 0 0 ...

where p, s, us, and ¢ are real numbers.

i) §2n—m+1} Of

(3.6)

3.7

3.8

Proof. Let{ey,... e,}and {e,1,. .., e2,1} be orthonormal tangent frame and orthonormal
normal frame on M, respectively. Putting X = W= ¢;, Y = Z = ¢;,i #7 in (2.9) and using (2.8),

we obtain

R(ei¢5,0:) —eXD(f){ (g(ej e)g(eiei) — g(ei,¢))g (e, e:))

+ T lem(e)atere) — n(ente)gte o)
+g(ei,¢)g(&,e)nle;) — g(ej )g(&, e)n(er)
— (e, ¢)g(wei, e1) — g(ei, €))8 (e, €:)

- 2o el )}~ (Blew)elene)

— Blej, ¢)g(ei, i) + Blej, e:)g(eir ¢) — Blei, €:)g (¢, ¢7))

1
- A—l||w\\2(g(ei7e]~)g(ej,ei) —g(e,¢)g(ei, )
+ Ala(el-, ej)g(e]-, el-) — Ala(ej, ej)g(el-, el-)
+ Aog(ei, e)alej, e;) — Aog(es, ¢)a(e;, e;)

+ Ao(A1 — A2)g(ei ¢)Bles &) — Na(A1 — A2)g(e, ¢)p(eis €),

- (Al - AZ)g(h(ejv ej)v Pl)g(eiv ei)
— (Az = M)g((ei, e), PF)gles ).

(3.9)



By taking summation 1 < <j < of (3.9) and using (2.7), we have Generalized

A}XPU){@+3V”WW—U (-1 2} (m—1) Wintgen
Ri7/7j7i = + 2—2 +3P + tr(B . A
1<i<j<m (e e e) 2 4 4 < " H H 2 7/( ) lnequahty

+gmom =Dl + (A + A2)(1 = m)a + As(Ar — A)(1—m)b

2n—m+1
+ (Mg = Ap)m(m — DAH)} + > 22[%%_<%Y}
r=1 1<i<j<m
(3.10)

where

_1 C L
—%;/1 (¢,¢)) =g (V" H).

Using (2.10) and (3.1), we obtain

- exp;@") {(c L B)WZ(M -1 + (c ; 1) 2 — 2m + 3(my cos’0, + m, cosgez)} + (m; ) tr(B)

+ 1m(m - 1)||a)H2 +%{(A1 + Ao)(1 —m)a + Az(Ar — Ag)(1 —m)b

8
I — (h;)z}.

2n-m+1 |:

+ (Ag — Ay)ym(m — 1)A(H)} + Z Z

r=1 1<i<j<m

3.11)
On the other hand, we have
) 2n—m+1 m 1 2n—m+1
= (Zh> =S S (m)
= r=1 1<i<j<m (3 12)
ZWZ 2n—m+1
W
Wl ; 1<;]<m "
Further, from [6], we have
2n—m+1 2n—m+1
Z Z (h;—hr) + 2m Z Z
r=1 1<i<j<m r=1 1<i<j<m
. 3.13)
2 2
2&%{ > (Wi h;;)}.
1<r<s<2n—m+11<i<j<m
Now, combining (3.3), (3.12) and (3.14), we have
owm 2n—m+1 . . 9
WM =z 2 }:{@@ (@)}. (3.14)

r=1 1<i<j<m

Taking into account (3.2), (3.11) and (3.14), we obtain the required inequality.
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Finally, by investigating the equality case of (3.5), the equality sign holds in (3.5) at a point
pe M if and only if the shape operators take the forms (3.6)—(3.8) with respect to some
suitable tangent and normal orthonormal bases. O

An immediate consequence of Theorem 3.1 yields the following:

Corollary 3.2. Let M be a minimal m-dimensional bi-slant submanifold in conformal Sasakian
space form M(c) of dimension (2n + 1) endowed with a quarter-symmetric connection, then we
have

c+3 ¢—1 3(c—1
Pmtp SeXp(f){ i (

) 2 2 ir(B)
oo I = 1) (my cos°6; + my cos’0r) o + p”

1 a b
+ 1”(0”2 — {(Al + Az) 1’7’l + Az(/\1 — Ag)% —

(A2 — A)A(H) }
(3.15)

Corollary 3.3. Let M be an m-dimensional submanifold in conformal Sasakian space

Fform M (¢) of dimension (2n + 1) endowed with a quarter-symmetric connection, then we have
Table 2:
For the semi-symmetric metric connection A; = Ay = 1, we have

Theor{m 3.4. Let M be an m-dimensional bi-slant submanifold in conformal Sasakian space
Jorm M(c) of dimension 2n + 1) endowed with a semi-symmetric metric connection, then we
have

ptp <IH] +exp(f){ T om +4m(m_1)(mlcos 61 4 my cos 92) + m (3.16)

1 9 2a
+ ZHUJH .

Corollary 3.5. Let M be an m-dimensional submanifold in conformal Sasakian space form

M (¢) of dimension (2n + 1) endowed with a semi-symmetric metric connection, then we have
Table 3:
For the semi-symmetric non-metric connection A; = 1 and A5 = 0, we have

Theore]% 3.6. Let M be an m-dimensional bi-slant submanifold in conformal Sasakian space
Jorm M(c) of dimension (2n + 1) endowed with a semi-symmetric non-metric connection, then
we have

3 ¢c—1 3(c-1)
< 9 c+ .

) (m1 cos*6; + my cos’6y) }

lLV(B) 1 2 a
+ 7 + Z—LHCOH - % — /1(7‘[)

3.17)

Corollary 3.7. Let M be an m-dimensional submanifold in conformal Sasakian space form

M(c) of dimension 2n + 1) endowed with a semi-symmetric non-metric connection, then we
have Table 4 as follows:
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4. Some examples of conformal Sasakian manifolds
In this segment, we provide some examples of a conformal Sasakian manifolds which is not
Sasakian.

Example 4.1. Let us consider a three-dimensional manifold
./\~/l = {(X1,x2,X3)€[R3 1 X3 > 0}’

where (x1, Xo, x3) arve standard coordinates in R>. We choose the vector fields

0 d d 0
=2 — — — 2 .= 2("/2
“ ( X +x26x3>’ v dxy’ v (e )éxg’

which are linearly independent at each point of M. Let g be the Riemannian metric defined by
g(vh 1}]-) = 05 Z#]a 17] = 17 27 37 g(vh 1}1) = g(027 UZ) = e_x37 g(’l)37 1}3) = 1

Let n be the an 1-form defined by
M) =1, n@) =0, ne)=0, nU)=gUuw), ¥ Uer(TM).
We define the (1, 1) tensor field ¢ as
@(v1) =02, @(v2) =-v1, (v3) =0.

The linear property of g and ¢ yield that

nws) =1, ¢*(U) =-U+nU)ws

2(eU, V) =g(U, V) =n(U)n(V),
forany U,V € F(M). Thus, (M, @, &, 1, 8) defines an almost contact metric manifold with
& = v3[24) Then we have

[0, 02) = —2¢7".

Similarly,

[v1,€] = xav3, [v,03] = 0.
The Riemannian connection V of the metric g is given by
@ﬁﬂz):@wﬂ+@@m—@mn

7g(Xa [sz]) 7g(Y7 [X,Z]) +g(Za [Xv YD

By Koszul’s formula, we obtain the following

= —x- 1/2 —_ ,1/2 = —x- 1/2
VyUo = —x302 — €% 03, V,v3=—e%" (01 —02), V, 01 =—%2016"" 03,

— _eal/2 = _yal/2 = _xa1/2
Voo = —xo00e™ 03, ViU = x01€7% 0y, Vs = =70 (0 4 02),

—= 3 —= g2 —= 1/2
VU3 = 2016501, Vo = X001 + €77 03, V01 = =€ (01 — 1) — X203,



Using contact transformation Generalized

p=¢, E=eM% j=ev, g=eg. @1 Wintgen

(M, @, & 7,8) is Sasakian manifold. So M is a conformal Sasakian manifold but not inequality

Sasakian. Since by the definition, we have
Vo, U3 # U3, 4.2)

for any v, v, € I'(M) (for instance V,,v3 # 0). By using the above results, we can find the non-
vanishing components of Riemannian curvature, Ricci curvature tensor and scalar curvature
as follows:

— a2

R(v1,02)v2 = =401 + X907 03, 4.3)
— 12 = .1/2 _xal/2
R(v1,03)v3 = =01 4+ 302 + %267 "3, R(v2,03)v3 =€ v1 + € vy

In view of above expressions, we turn up the following:

IC(’Ul,le) = —4€x3, ’C(Z)l,l)g) = —1, IC(UZJ);;) = €x3(1 —.X'g).

Ngte that the sectional curvature of manifold M with almost contact-metric structure
(M7 éb? 57 ﬁ?g) is
K(Ul,vz) = —3, K(Ul,vg) = —1, K(Uz,vg) =-1.

Moreover, the non-vanishing components of Ricci curvature tensor, and scalar curvature are
given by

Ric(vy,v9) = =4,  Ric(vs,v3) = =1 + e 7%/2, @4
p=-5+e™"

Example 4.2 Let us consider a three-dimensional manifold
M = {(x1,%, %) € R : 23> 0},

where (x1, Xo, X3) are standard coordinates in R®. We choose the vector fields

d a
_ _ _ —x1/2
U1 =X Vo = X1 U3 = —\¢€ X1
dxs’ dxy’ ( ) ox1’

which are linearly independent at each point of M. Let g be the Riemannian metric defined by
g(Uz',Z/j) :O,Z;é], 17]: 172735 g(ylvvl) :g(’l)27i}2) :e_XIv g(1)37l}3) =1

Let n be the an 1-form defined by
Mes) =1, n(e) =0, n(e) =0, n(U)=g(U,u), ¥Uer(TM).

We define the (1, 1) tensor field ¢ by
e(v1) =v2, @(2) =-0v1, @(v3)=0.



AJMS The linear property of g and ¢ yield
n(vs) =1, ¢*(U) = =U+n(U)w,

g(eU,@V) =g(U, V) =nU)n(V),

forany U,V € F(M). Thus, (M, @, &1, 8) defines an almost contact metric manifold with
& = v3. Then, we have

[Ul, 1)2} = 0

Similarly,
[v1,¢] = ey, [v2,05] = 2,

The Riemannian connection V of the metric g is given by
2¢(VxY,Z) =Xg(Y,Z)+Yg(Z X)—Zg(X,Y)
—8(X,[Y,Z]) —g(Y,[X,Z]) +2(Z, X, Y]).
By Koszul’s formula, we obtain the following:

— - 1 = 1
le)g = 0, Vvli)g = Qe’”/z(xl + 2)1)1, Vulvl = - ée’”/z(xl + 2)1)3,

1 — 1
V1 =0, Vv =— Qe_xl/z(ﬁﬁ +2)v3, V3= 5 1210y,

1 — 1
Vpgf)g = 0, Vp Uy = ée)‘l/levz, Vvsvl = - Qe"lﬂxlvl.

3

Adopting contact transformation
p=¢, E=eMe ="y, g=e"g 45)

(M, &, &1, g) is Sasakian manifold. Therefore, M is a conformal Sasakian manifold but not
Sasakian, since by the definition, we have

(Vosg)or #2(or, )¢ = e, 6)

for any vy, v, €I'(M). By using the above results, we find the non-vanishing components of
Riemannian curvature, Ricci curvature tensor and scalar curvature.

— 1
R(v1,02)v2 = — Z(xl + 2)27/1, R(ve,v3)v3 = —€02,  R(v1,02)v3 =0, @7

R(Ul,ﬂg)i)g = —grlljl, R(Ug,l/l)f)l = —U3, R(Ug,Ul)Uz = O,

> 1
R(vz,01)0r = — (1 + 2%, R(vs,00)vs = —v3.

Ric(vy,v1) = Ric(vs,v3) = %L(XI +2)%™,  Ric(vs,vs) = 270, 4.8)

-] [%(—xl +2)%42¢71 }

p=ce .



Example 4.3. Let R+ endowed with an almost contact structure (¢, &, 3, g) given by [3] Generalized
Wintgen

B 1 i . 9 . ,
g=c¢ 2f{q®n+4 2:{(dx’)2 + (dy)z}}, &= e”‘{2&}, inequality
i=1
d 3 3 3 Sy ;0
¢<;<X01+Yayl)+2&>=_l<lf = )ayl+ZY

= =1

where ¢ =1 {z;; @)+ () +22}.

Then, (R¥*!, ¢, & n,g) is not Sasakian manifold, but (R¥*!, ¢, & 7, @) is Sasakian space
form with constant g-sectional curvature, where

Therefore, (M, @,E,7,8) is the conformal Sasakian space form so that (M, @, & 7, ) is
Sasakian space form of constant ¢-sectional curvature ¢ = — 3.

Example 4.4. In|25), it was shown that the warped product R X sC" is a generalized Sasakian
space form with

) " s
.fl:_f27f‘-2:07f3:_f2 +7
where f = flt), teRr and f denotes the derivative of f with respect to t. If we choose n = 4 and
A = €, then M s a five-dimensional conformal Sasakian space form.

Example 4.5. Let us consider a 11-dimensional manifold M = {(x1,...,x10,2) €RM™ : 20},
where (x1, Xo, x3, Xy, X5, Xe, X7, Xa, Xo, ¥10, 2) ave standard coordinates in R We choose the vector
fieldsE; = e~ 6x’ 1=1,2,...,10, Ey; = e’za% which are inearly independent at each point of

M. We define g by

§=¢*G,

where G is the Euclidean metric on R". Hence {Ei}io12.. 1118 an orthonormal basis of M.
We consider an one-form iy defined by

i=céds X)) =2(XEy), vV Xer(TM).

We define the (1, 1) tensor field @ by

¢ 25: xvi+x~ L 25: —X 0
4 - 'ax,- l+50xl-+5 6xl+5 ”saxl

=1 i=
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Thus, we have

o(E) = Eis, @(Eiys) =—E;, @(En) =0, 1<i<5.

The linear property of g and @ vield that
WEn) =1, &X)=-X+pX)Ey

jfor ay X,Y e F(TM). Thus, (M, ®, &, n,8) deﬁftes an almost contact-metric manifold with
& = En. Then, we have [Ey, E») = 0. Similarly, [E;, &) = e°E, [E, E)] = 0,1 <i#7 <10

22(VxY,2) =Xg(Y.Z)+Yg(Z X)—-Z23(X,Y)

By Koszul's formula, we obtain the equations as follows:
VElE, = —e‘Z:f, V;CE = 0, VEEZ = 0, VE,E = e’ZEl-, 1 SZ <10.

Thus, we see that M is the conformal~ Sasakian manifold.
Now, we define a submanifold M of M by the immersion y as follows:

y(ul,uz,us,m,us,ue,m)=e‘z<u1,u3, \/—%5,\/—%6#27%4(3059 , Uy SING, \[us,fue,m)

for0 <0 <%
It is easy to check that tangent bundle 7 M = Span{ Xy, X, X3, Xy, X5, X5, X7 }, where

d d d d d
= < = —___ = —z___ = —z 9— 6—
Xi=e¢e a Xo=¢ PP Xs=¢ ) Xi=¢ {cos o 7—l—sm Gxg}

1 d d 1 d d d
Xomeid 2 4 O\ x e ] Ty e
5 ¢ \/§{6x4+ax9}’ 6 ¢ \/Q{ax5+6xlo}’ 7 ¢ 0z

Using the almost contact structure ¢, we obtain

- L0 L0
pXi=e"—, pXo=—"—, 0X3

:e_z—
o dx Ox;7’
oX;, = —e?{ cosf 9 6+sin9 9 71( =¢7 1 76 + 9
P = ze 6x3 » PAs = \/Q 6x4 0x9 ’
1 i) 0
oXg =€ —={ — +— oX; =0
PAg 4 \/Q{ ax5+ax10}7 pA7

If we consider the distributions as follows:
Dy, = Span{X1, Xz}, Dy, = Span{Xs,Xs}, &= Span{Xs,Xs}.

Then, we have TM = Dy, @ Dy, ® (£). By some computations, it can be verified that M is bi-
slant submanifold of M.
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