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Abstract

Purpose — The objective of this work is to study the periodic solutions for a class of sixth-order autonomous
ordinary differential equations x® + (14 p? + ¢®)% + (p? + ¢* + p*¢)i + pq*x = eF (x, %, %, %, 'j&',x(é)),
where p and ¢ are rational numbers different from 1,0, —1 and p # g, ¢ is a small enough parameter and F € % is
a nonlinear autonomous function.

Design/methodology/approach — The authors shall use the averaging theory to study the periodic
solutions for a class of perturbed sixth-order autonomous differential equations (DEs). The averaging theory is
a classical tool for the study of the dynamics of nonlinear differential systems with periodic forcing. The
averaging theory has a long history that begins with the classical work of Lagrange and Laplace. The
averaging theory is used to the study of periodic solutions for second and higher order DEs.

Findings — All the main results for the periodic solutions for a class of perturbed sixth-order autonomous DEs
are presenting in the Theorem 1. The authors present some applications to illustrate the main results.
Originality/value — The authors studied Equation 1 which depends explicitly on the independent variable .
Here, the authors studied the autonomous case using a different approach.

Keywords Periodic orbit, Sixth-order differential equation, Averaging theory

Paper type Research paper

1. Introduction
When studying the dynamics of differential systems following the analysis of their
equilibrium points, we should study the existence or not of their periodic orbits.

The averaging theory is a classical tool for the study of the dynamics of nonlinear
differential systems with periodic forcing. The averaging theory has a long history that
begins with the classical work of Lagrange and Laplace. Details of the averaging theory can
be found in the books of Verhulst [1] and Sanders and Verhulst [2]. The averaging theory is
used to the study of periodic solutions for second and higher order differential equations
(DEs) (see Refs [3-7)).

In [8], the authors studied the periodic solution of the following fifth-order differential
equation:

2 —ex¥ —di — ¢k — bi —ax = EF(z‘,x,x, X, X, 5&’), )]
where a = Aud, b= —(u+ A8+ ud),c =A+u+ 6+ s, d=—1+ Au + A8 + ud),

e = A+ u—+ 5, eisasmall parameter and F e C%is 27 — periodic in ¢. Here, the variable x and
the parameters 4, y, 6 and ¢ are real.
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In [9], the authors studied equation (1) with F' = F(x, %, ¥, x, X) which is autonomous.
They studied the five cases.

In [10], the authors studied the periodic solution of the following sixth-order differential
equation:

X+ 14+ + )5+ (0 + @ +0°°) i+ p°¢°x = eF (t,x,4,%,%,%,29), ()

where p and q are rational numbers different from —1, 0, 1 and p # ¢, ¢ is small enough real
parameter and F € C* is a nonlinear nonautonomous periodic function.

Differential equations (DEs are one of the most important tools in mathematical
modeling. For examples, the phenomena of physics, fluid and heat flow, motion of objects,
vibrations, chemical reactions and nuclear reactions have been modeled by systems of
DEs. Many applications of ordinary differential equations (ODESs) of different orders can
be found in the mathematical modeling of real-life problems. Second- and third-order DEs
can be found in Refs [11-14], and fourth-order DEs often arise in many fields of applied
science such as mechanics, quantum chemistry, electronic and control engineering and
also beam theory [15], fluid dynamics [16, 17], ship dynamics [18] and neural networks [19].
Numerically and analytically numerous approximations to solve such DEs of various
orders have is studied in the literature. Most solutions of the mathematical models of these
applications must be approximated.

The objective of this work is to study the periodic solutions for a class of sixth-order
autonomous ordinary DEs:

$O 4 (L7 4+ @) F + (7 + ¢+ 0°0)i + pax = eF (x5 25, %,20), Q)

where p and ¢ are rational numbers different from —1, 0, 1, and p # ¢, € is small enough real
parameter and F € C is a nonlinear autonomous function.

In general, obtaining analytically periodic solutions of a differential system is a very
difficult task, usually impossible. Recently, the study of the periodic solutions of sixth-order
of DEs has been considered by several authors (see Refs [3, 20, 21]). Here, using the averaging
theory, we reduce this difficult problem for the differential equation (3) to find the zeros of a
nonlinear system of five equations. For more information and details about the averaging
theory, see section (2) and the references quoted there.

In [10], the authors study the equation (2) where depends explicitly on the independent
variable ¢. Here, we study the autonomous case using a different approach. We shall use the
averaging theory to study the periodic solutions for a class of sixth-order autonomous
differential equation (3).

Now, all our main results for the periodic solutions of equation (3) are as follows:

Theorem 1. Assume that p, q are rational numbers different from 1, 0, — 1 and p # q, in DE
(3). For every positive simple (r; ,ZJ LU g , Vg , WJ ) solution of the system,

fi(”o,Zo,UO, V07W0) :05 i:17'~'757 (4)

satisfying

det(a(}—l,]:z,]:&]%fs)

370, Zo, Un, Vo, Wo) (007t ottor=(rs 25075 w7 ) 0 ©

where



1 2rk
10,0, U, Vo, Wo) =5 / COSOF (Ar, Ag, Ag, As, As, Ag)do),
0

—pUpsinf + 7y cos(pe)
7o

2nk
FalroZo,Un Vo, Wo) =57 | F(Ay Ao, As, Ay, As, A6)d6,

2k 7,100 — 1 sin(p0)
2 k 70

(707ZO7U0aV07W0) (A17A27A37~’447A57A6)d0

M —qWosind + 7y cos(q6)
7o

1
f4(70’ZO’U0’VO’W0):2_;ﬂe/ F(A17A27A37A47A57A6)d9
0

1 [** qV,sing—rysin(qd
]:S(VO’ZO’UO’VO’WO):Z_M/ ALl 0 (q )
0

F(A17A27A37A47A5?A6)d67

7o

©)

be with p = pilps, ¢ = q1/qa, where py, po, q1, q2 are positive integers p#q, (p1,p2) =
(q1,q2) = 1, let k be the least common multiple of p, and qs, and

A= 7oSiné n Uycos(p0) +Zosin(p8) ~ Wocos(g0) + Vosin(gh)
(@-1¢" -1 p@*—a*)(*-1) a0’ —a") (¢ -1)
Ay 79C0S 6 +Z ocos(pl) — Upsin(pd)  —Vycos(gh) + Wysin(gh)
(@-1De*-1)  *-¢)*-1) *-a) -1
Sy— rosind  p(Ugcos(pd) +Zysin(po)) +q(Wo cos(q8) + Vosin(gh))
(@-1)p*-1) =) (p*-1) P-4 (-1
A 7pcos 6 +pz( —Zycos(pf) + Upsin(pd))  q*(Vocos(qh) — Wysin(gh))
(@ -1p*-1) W' =) (p*~1) =) -1
. 7oCc0S 6O +p3(U0 cos(pt) +Zosin(p9)) qS(Wo cos(qﬁ) + Vysin(gh))
(@-D0*-1 =)’ )@=
dpe "0 sinf N P*(Zycos(p8) — Upsin(ph))  q*(—V, cos(qH) + Wysin(q8))
(@ -1@p*-1) W' -q*) (" -1) -4 (¢*-1) ’
@)
There is a periodic solution x(t, €) of equation (3) tending to the periodic solution
X(t) = 7y sint n U, cos(pt) + Z, sin(pt) B W, cos(qt) + V, sin(qt) ®
@-1)@*-1) 0’ - -1) 90’ =) -1)

of the equation x© + (1 +p* + ¢*)¥ + (* + ¢* + p°¢*)i + p*q*x = 0, when & — 0. Note
that this solution is periodic of period 2rmk.
Theorem 1 is proved in section 3. Two applications of Theorem 1 are as follows:

Corollary 2. If F(x,i, k%, % 20) = i* + > =%, then the differential equation (3)
withp =2,q = % has four periodic solutions xt, ) for i = 1, ..., 4 tending to the periodic
solutions
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1. 4 .
x1(1) :—ésmﬂ-gsm

')
')

1. 4
x3(t) = =sint+-cos| =t ),

oo+ 3o0(2)
)

NI~ DN

1. 4 .
%2(t) :—ésmtfgsm
1
2
L
2

1. 4
x4(1) :ésmt—gcos t

of ¥ +2% + 4%+ x = 0when e — 0.
Corollary 2 is proved in section 5.

Corollary 3. IfF(x,&,%,%, %, x0)) = —i® — 2 then the differential equation (3) with p = 2,
q = 3 has four periodic solutions xt, €) fori =1, . .., 4 tending to the periodic solutions

n(t) :g\/%—TJESiM—%(lS—lSJET))sin(Zt)—%(8—8\/5) \/25—5v5sin(30),
(1) :—gmsinp%(qu\/ﬁ )sin(2t)+11%(878\f5) msin(sf),
%(t) :g\/msmt_%(15+1s\/§))sin(zt)—%(Ms\/ﬁ) \/25-+5v5sin(30),
w(t) :—gmsint—;—o(l&rwﬁ )sin(zt)+1170(8+8¢5) msin(&‘),

of ¥ +14% + 49% + 36x = 0 when & — 0.

Corollary 3 is proved in section 5.

2. Averaging theory

In this section, we present the basic results from the averaging theory that we shall need for
proving the main results of this paper. We want to study the 7-periodic solutions of the
periodic differential systems of the form

x = Fo(x,t) + eF1(x, 1) + €Fy(x, 1, €), ©)

with & > 0 sufficiently small. The functions Fo,F;: QX R—R” and Fy: QX R X

(—&p,&0) — R"are C? functions, T -periodic in the variable fand Q is an open subset of R”. We
denote by x(z, ¢, £) the solution of the differential system (9) such that x(z, 0, &) = z. We
assume that the unperturbed system

% = Fy(x,1), (10)
has an open set V with CI(V) c Q such that for each z € CI(V), x(t, z, 0) is T-periodic.

We consider the variational equation
v = DxFy(x(2,1,0),1)y, 11)



of the unperturbed system on the periodic solution x(z, £, 0), where y is an # X z matrix. Let
M,,(?) be the fundamental matrix of the linear differential system (11) such that M,(0) is the »
X n identity matrix. The next result is due to Malkin [22] and Roseau [23], for a shorter and
easier proof see Ref. [24].

Theorem 4. [Perturbations of an isochronous set] Consider the function F : CI(V) - R"

F(z) = /0 "M (0, P (x(2. ), Dt 12)

If there exists a € V with F(a) = 0 and det((dF /dz)(a)) #0, then there exists a T-periodic
solution of system (9) such that when & — 0 we have that x(0, €) — a.

3. Proof of Theorem 1
Ify=1xz=xu=2xv=2% w= %, then system (3) can be written as
r= Y,
=z,
zZ=u,
uw=muv,
v=uw,
w=—p¢x — (P> + ¢ +1°¢°)z — (1 +p* + ¢*)v + eF (x,,z,u,v,w),

with & = 0, system (13) has a unique singular point at the origin. The eigenvalues of the linear
part of this system are +¢, +p¢ and +¢i. By the linear inversible transformation,

(X.Y,Z,U,V,W)" =B(xy.z.uv,w), (14)
where

0 p2q2 0 p2 + qZ
v 0 P44 0
7 0 7 +1
7p 0 pl@+1) 0
0o 0 1+
a0 q(l+p*) 0

Qoo HO
O~ O+~ O

We obtain the transformation of the system (13) as follows:

X=-Y+eGX,Y,Z,UV,W),
V=X,

Z=—pU+eGX,Y,Z, UV, W)),
U=z,
V=—qW+eGX,Y,Z,U,V,W),
W =qV,

where GIX, Y, Z, U, V, W) = F4, B, C, D, ], L) with
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AJMS 4 _9@ DU = — )W +p4(0* —q")Y
pat* = 1)@ - D* — &) ’
-V + (- A)X+ (¢ -1)Z

B=
-1 -1 - ) ’
o P@ DU+l - )W — ("~ ¢*)Y
® =)@ -1 - ) ’
D:qZ(pZ —1)V— (pZ _q2>X—p2<q2—1)Z

®* =1 -D0* - ¢*) ’
P@E-)U-¢@-1)W+ @ —¢")Y
®* = D@ -1)¢* - ¢*) ’
@)V 0 - )X 40 (- 1)Z
W’ =1 -1)" ).

The linear part of the system (15) at the origin is in its real Jordan normal form and that the
change of variables (14) is defined when p and q are different from 1, 0, —1 and p # g because
the determinant of the matrix of the change is —pg(p% — 1)°(¢2 — 1)*(p% — ¢%)°. We pass from

the cartesian variables (X, Y, Z, U, V, W) to the cylindrical variables (7, 6, Z, U, V, W) of RS,
where X = 7cos @ and Y = rsin . In these new variables, the differential system (15) can be
written as

J=

7 =¢€cosOH(r,0,Z, U,V , W),
o= 1—5¥H(r,e,z, ULV, w),

Z=—pU+eH(r,0,Z,U,V, W),

(16)
U=z,
V=—qW +¢eH(r,0,Z,U,V, W),
W= qV,

where H(r, 0, Z, U, V, W) = Fla, b, ¢, d, j, }) with

o= 4@ = 1)U = p(" = YW + pq(p” — ¢’)rsin 0
pa@* = 1)@ - 1) (" - ¢°) 7
—@* =1V + (@ —¢*)recosb0+ (¢° —1)Z
@ -D(@ -’ -4°) 7
—p(¢* = 1)U +q(p* —1)W — (p* — ¢°)rsin®
O -1 -1)* - ) 7

h—




_ W -1V —(p*—q*)rcos0 —p*(¢* —1)Z
@ -D@ -1’ -4 ’
P =10)U - —1)W + (p* — ¢*)rsin@
-1 -1)0* - %) ’
[ —¢'(0* = 1)V + (p* — ¢*)rcos 0+ p*(¢* — l)Z.
" =@ - - ).

Dividing by 6, the system (16) becomes

d

j=

%: ecosOH + O(¢%),

Z—g = —DU+8(1 _pUiinH)H+ o(&),
%:p2+epzjingH+O(82),

% = —qW+£(1 f&:ing>}]+0(sz),
% = qVJre&rinaHJrO(sz)7

where H = H(r, 0,2, U, V, W).

We will now apply Theorem 4 to the system (17). We note that system (17) can be written

as system (9) taking
cos OH
(1 _pUs/mQ)H
7 0 !
A —pU j)Zsiné‘H
x=| U |,t=0,Fy0,x)=| pZ |, Fi(6,x) = r
V —aW W sin@
W qv (1 4 . )H
qVS1n9H

7

System (17) with & = 0 has the 27% periodic solutions

7(6) 70

Z(0) Zy cos(pf) — Uy sin(po)
U@ | = Uycos(p8) + Zysin(pg) |,
V(0) Vo cos(q8) — W sin(gh)

W (o) Wy cos(g0) + Vysin(g0)
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for (ro, Zo, U, Vo, Wo) with g > 0 and p = p1/po, ¢ = q1/q2, Where p, ps, g1, g2 are positive
integers p #q, (b1, 02) = (q1,42) = 1, let k be the least common multiple of p, and gs. To look
for the periodic solutions of our equation (17), we must calculate the zeros a = (v, Zo, Uy, Vo,
W) of the system F(a) = 0, where F(a) is given (12). The fundamental matrix M(6) of the
system (17) with & = 0 along any periodic solution is

1 0 0 0 0

0 cos(pd) —sin(ph) 0 0
M(@)=M.,(0)=| 0 sin(pd) cos(pd) 0 0

0 0 0 cos(gh) —sin(q0)

0 0 0 sin(gd)  cos(q6)

Now computing the function F(a) is given (12), we got that the system F(a) = 0 can be
written as

18)

SO O OO

Fi(r,Z, U, V, W)
Folr,Z, U, V, W)
Fs(r,Z, UV, W) | =
Fo(r,Z, UV, W)
Fs(r,Z, U, V, W)
where

2mk

1
R0ZU VW) =5 / s OF (Ar, As, A, As, As, Ag)do,
0

2nk _ .
Folr ZU VW) =1 / PUSG +70COSW0) o g 4, Ay, Ay, A5, As)db,
2rk 0 70
2t o
Fur 2, U VW) = [ PO SO0) i gy, A, s, A,
0

—qWysin@ + r, cos(qb) P
70

1 21tk
FAr 20V W) =5 | (A, Ao Ay, Ay, As, A,
0

1 2rk : _ H
For, 2.0V, W) = / qVosin0 7070 SINGO) Ay, Ay, Ag, Au, As, As)dO),
0

with A;, Ao, As, A4, As, and Ag as in the statement of Theorem 1.

If determinant (5) is nonzero, the zeros (", 2", U", V*, W) of system (18) with respect to the
variable 7, Z, U, V and W providing periodic orbits of system (17) with & # 0 small enough
if they are simple. Going back to the change of variable, for all simple zero (", 2", U", V", W) of
system (18), we obtain a 27k periodic solution x(f) of the differential equation (3) for &£ # 0 small
enough such that

7y sint U, cos(pt) +Z, sin(pt) W cos(gt) + Vy sin(qt)
(@-D*-1) p@W* P> 1) aw - -1
of x0 + (142 + ¢*) ¥ + (0> + ¢* + p°¢%)x + p*¢*x = Owhen & — 0, where k is defined in

the statement of Theorem 1. Note that this solution is periodic of period 2z%. Theorem 1 is
proved.

x(t, ) >



4. Proof of Corollaries 2 and 3 Periodic

4.1 Proof of Corollary 2 solutions for
Consider the function differential

F(x i, %, %, ‘a‘e,x@) =i+ -7, equations
which corresponds to the casep = 2andq = % The functions F; = F;(ro, Zo, U, Vo, W) for
i=1,...,50f Theorem 1 are

16

8 2

2 2
.7:1 :%(VO_WO) —EVOZo—gf’(),
F o 8 10U(2)7’0 — 8UOV()W() — 152070
> 6 7o ’
F o 8 10U()Z()7’0 — 82() V()Wo + 15U07’0
S 6T 7 ’
2 10UOW07’0—8VOW§+40V07’g — 15V07’0
F4 = )
675 70
2 10U, Voro — 8VeW + 40W 2 + 15Wr,
fs T )
675 70

System F; = Fo = F3 = F4 = F5 = 0 has the four solutions:
03,2503 V5 W3) = (50.0.5:0).
3 15
_§70a07§70>7
3 15
(7§7070a07§)7

* * * * * 3 15
(”OvZo’Uo»VmWo) = (—§,070707—§>-

032505 vs W) =

(r5:20,Uq - V. Wy)

Since the Jacobian

#0

det é(fl,Fz,Fs,ﬂfs)' 1024
3(r0, Zo, Uy, Vo, Wy) toZaUoVoWo)=(r5 . Z3.Ug Vo W5 ) |~ 12301875

by Theorem 1 equation (3) has the four periodic solution of the statement of the Corollary 2. (]

4.2 Proof of Corollary 3
Consider the function

F(xxxx ‘a'e',x@) — i 2,
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which corresponds to the case p = 2and g = 3. The functions F; = F;(ro, Zo, Uo, Vo, W) for
i1=1,...,50f Theorem 1 are

1
Fio= 1200(W°U° +VoZo) = 73570%0 ~ 3470
P 96U Vo — 160Ugro — 96U WoZo + 30V or2 + 257 + 3840Zr
Z 757600 7o ’
F 1 48U0 V()Z() — 8OU()Z()7’0 — 48W()Z§ — 15W()7’(2) — 1920U01’0
’ 28300 7o ’
F _ 1 9UOVOW0 — 15UOW07’0 — 9W§Zo — 5207’% — 90V07’0
t 73600 7o '
F - 1 9UOV€ — 15UOV07’0 + 5U07’0 — 9VOWozo + 90W07’0
> 7 73600 7o '
System F1 = Fo = F3 = F4 = F5 = 0 has the four solutions:
(e, 20, Us Ve, W, = (458\/25 5v5.,15—15v/5,0, ( 8+8\/§) 9% — 5\/§,o>,
* * * * * 4
(e, 20, Us Ve, W) = ( 58\/25 5v/5,15-15v5,0, (8- 8v5 ) /25 5\/5,0>,
* * * * * 4
(ra, 2, U Ve, Wy) = (:\/25+5\f 5,15+15v5,0,— (8+8v5) 25+5\/5,0),

S

(r;,zg,Ug,Vg,Wg):( 458\/25+5f 15+15\/_0<8+8\/_ 25+5

)

Since the Jacobian (5) for these four solutions (ry ,Z, , Uy , Vo , Wy ) is

73 109 73 109
11520000 * 34560000 g 11520000 34560000 Vs

respectively, we obtain using Theorem 1, the four solutions given in statement of the
Corollary 3. O
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