
A dynamic reward-enhanced
Q-learning approach for efficient

path planning and obstacle
avoidance in mobile robotics

Atef Gharbi
Department of Information Systems,

Faculty of Computing and Information Technology, Northern Border University,
Rafha, Saudi Arabia

Abstract

Purpose – The purpose of the paper is to propose and demonstrate a novel approach for addressing the
challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific
objectives and purposes outlined in the paper include: introducing a new methodology that combines
Q-learningwith dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing
the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the
convergence to optimal solutions and demonstrating through simulation results that the proposed method,
dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving
convergence to an optimal action strategymore efficiently, requiring less time and improving path exploration
with fewer steps and higher average rewards.
Design/methodology/approach – The design adopted in this paper to achieve its purposes involves the
following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates
Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination
forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function,
while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during
navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This
data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the
environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning
process. Thesemechanismsprovide feedback to the robot based on its actions, guiding it tomake decisions that
lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and
inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the
effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation
uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance
metrics: the design incorporates performance metrics to measure the success of the approach. These metrics
likely include measures of convergence speed, exploration efficiency, the number of steps taken and the
average rewards obtained during the robot’s navigation.
Findings – The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle
avoidance: the paper’s proposed approach, DRQL, leads tomore efficient path planning and obstacle avoidance
forMR. This is achieved through the combination of Q-learning and dynamic rewardmechanisms, which guide
the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence
of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which
typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration
time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration
during navigation. This reduction in exploration time contributes to more efficient and quicker path planning.
(4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to
improved path exploration in unknown environments. The robot takes fewer steps to reach its destination,

DRQL
approach in

mobile robotics

© Atef Gharbi. Published in Applied Computing and Informatics. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial and
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Conflict of interest: The author declares that there is no conflict of interest.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2634-1964.htm

Received 11 October 2023
Revised 21 December 2023

8 January 2024
Accepted 11 January 2024

Applied Computing and
Informatics

Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964

DOI 10.1108/ACI-10-2023-0089

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-10-2023-0089


which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using
DRQL receive higher average rewards during their navigation. This suggests that the proposed approach
results in better decision-making and more successful navigation.
Originality/value – The paper’s originality stems from its unique combination of Q-learning and dynamic
rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and
average rewards. These original contributions have the potential to advance the field of mobile robotics by
addressing critical challenges in path planning and obstacle avoidance.

Keywords Path planning, Mobile robot, Q-learning, Dynamic reward-enhanced Q-learning (DRQL)

Paper type Research paper

1. Introduction
Path planning is a fundamental challenge in mobile robot (MR) safe and efficient navigation in
an unknown environment that may contain obstacles. Path planning encompasses a diverse
array of approaches, with the optimal choice contingent upon the unique attributes of the
environment and the robot in question. Contrary to the known environment [1], where the robot
possesses knowledge of the terrain and path planning can be straightforward, in a partially
known environment, only partial mapping is available and the robot grappleswith uncertainty
regarding concealed obstacles [2]. Completely unknownenvironment [3] is themost challenging
scenario where the robot confronts uncharted terrain, devoid of any prior mapping. Each of
these scenarios requires distinct path-planning techniques to address the specific challenges
posed by varying degrees of environmental familiarity. Path planning in a known environment
is relatively straightforward, as the robot knows where all the obstacles are. However, path
planning in a partially known or unknown environment is more challenging, as the robot must
first map the environment and then find a path that avoids obstacles. Partially known
environments are often themost practical, as they allow the robot to benefit from the knowledge
of previously mapped areas while still being able to navigate in new areas.

The selection of a path planning algorithm significantly impacts a robot’s navigation in
terms of safety, efficiency and robustness. Path planning in robotics is broadly categorized
into static and dynamic approaches. In static planning, the robot charts a fixed route around
stationary obstacles in the environment [4]. Conversely, dynamic planning adapts to moving
obstacles, requiring the robot to continuously adjust its path to navigate safely through the
evolving surroundings [5]. While static planning is generally simpler, it may not suffice when
obstacles are in motion, rendering dynamic planning essential for safe navigation.

This study introduces the dynamic reward-enhanced Q-learning (DRQL) algorithm,
mergingQ-learning techniqueswith dynamic rewardmechanisms. This innovative approach
allows robots to navigate unknown environments, adapting to environmental changes and
task variations during movement. Empirical results demonstrate that this algorithm
outperforms traditional Q-learning, showcasing improved convergence speed, optimization
and adaptability. Our contributions can be outlined in three main aspects. First, we introduce
dynamic rewards, leveraging information limitations in unknown environments. Static
rewards relate to state node characteristics, while dynamic rewards vary based on target
point distance, preventing blind searches and excessive exploration, enhancing learning
efficiency. Second, the DRQL algorithm encompasses three steps: (1) exploration, (2)
exploration and exploitation and (3) exploitation, addressing limitations of classical
Q-learning in path planning. Third, experiments validate the effectiveness of DRQL in
tackling complex path-planning challenges encountered by MR in diverse environments.

The subsequent sections of this paper are arranged as follows: the second section contains
an exploration of relatedworks in the field. Section 3 describes the formulation of themodified
Q-learning algorithm, describing its four core components. Section 4 details the simulation
methods used. Finally, the final section summarizes the key findings and indicates potential
avenues for future research.

ACI



2. Related works
Following an extensive assessment of the literature, the navigation methodologies in robotics
are categorized into two principal paradigms: classical approaches and reactive strategies
(see Figure 1).

Historically, robotics has heavily focused on classical approaches, such as cell
decomposition [6], roadmap approach [7] and artificial potential field [8]. However, these
methods suffer limitations in computational complexity, susceptibility to local minima,
uncertainty handling, reliance on precise data and the need for accurate real-time
sensing. As a result, doubts persist regarding their practicality in real-time applications.
Efforts to enhance these approaches through strategies like artificial potential fields and
hybrids have not consistently surpassed reactive methods, especially in real-time
scenarios.

Reactive strategies excel in navigating unfamiliar environments, leveraging their
simplicity, adaptability to uncertainty, efficient behavior and real-time performance,
often outperforming classical methodologies. Meta-heuristic methodologies revolutionize
path planning by iteratively generating candidate solutions and selecting the best-fit
trajectory for execution, encompassing various methods like genetic algorithm,
simulated annealing, Tabu search, particle swarm optimization, ant algorithm,
bacterial foraging optimization and bee algorithms. Yet, despite their advantages over
classical methods, these approaches are not devoid of limitations. Genetic algorithms [9],
while effective, can face challenges in complex environments due to their reliance on
population-based optimization, potentially struggling with computational intensity in
scenarios with extensive search spaces. Simulated annealing [10] might face limitations in
swiftly adapting to rapidly changing environments due to its gradual cooling process,
potentially leading to suboptimal paths or slower convergence in dynamically evolving
scenarios. Tabu search [11] might struggle in navigating complex and high-dimensional

Figure 1.
Classification of

navigation methods for
mobile robots

DRQL
approach in

mobile robotics



spaces due to its reliance on memory structures, potentially limiting its efficiency in
certain intricate environments. Particle swarm optimization [12] can suffer from
premature convergence and getting stuck in local optima, hindering its ability to
thoroughly explore complex search spaces efficiently. Ant algorithms [13] might struggle
with scalability and large search spaces due to their reliance on pheromone trails,
potentially leading to suboptimal solutions or increased computational requirements.
While bacterial foraging optimization (BFO) [14] presents strengths in exploration and
optimization, its sensitivity to parameters, slower convergence and potential challenges
in dynamic environments might limit its suitability for real-time and highly dynamic
robotics. Bee algorithms [15] might face challenges in handling dynamic environments
efficiently due to their reliance on fixed communication patterns among agents,
potentially limiting their adaptability to real-time changes. The firefly algorithm [16],
although an effective optimization technique in certain contexts, presents drawbacks in
path planning and obstacle avoidance for mobile robotics. The algorithm’s performance
can be affected by parameter tuning, and finding the right balance between exploration
and exploitation can be challenging.

Fuzzy logic, while adept at managing uncertainties and enabling adaptive decision-
making for MR in intricate terrains [17], faces limitations in computational intensity due to
complex rule bases, challenges in representing dynamic uncertainties, dependency on expert
knowledge and struggles in highly dynamic settings, requiring potential integration with
other methods to address these constraints.

Neural networks, known for their ability to learn complex patterns [18], face challenges in
MR path planning and obstacle avoidance due to reliance on extensive training data,
potential interpretability issues, susceptibility to overfitting or underfitting in diverse
environments and computational complexity, calling for hybrid or complementary
approaches to mitigate these limitations.

The A* algorithm, known for its efficiency in finding near-optimal paths [19], faces
challenges in scaling to complex environments with high-dimensional spaces or intricate
obstacles, potentially struggling in dynamic settings or when heuristic estimates are
inaccurate.

Reinforcement learning, applicable in various environments, particularly in path
planning, features Q-learning as a prevalent algorithm, creating state-action pairs with
associated Q-values denoting anticipated rewards for actions in specific states [20]. The
learning process involves the agent navigating through trial and error, initially exploring
random actions and assessing their resulting rewards. Over time, it identifies rewarding
actions within specific states while balancing the trade-off between trying new actions
(exploration) and choosing known rewarding ones (exploitation) [21]. In path planning, the
agent is incentivized for finding collision-free paths but penalized for actions resulting in
collisions [22]. Despite its potency in path planning, Q-learning’s computational demands and
parameter selection are crucial considerations. Reinforcement learning stands out for path
planning due to its adaptability in diverse environments, showcasing versatility and
adeptness in acquiring navigation skills, particularly in challenging and dynamic settings
[23]. Reinforcement learning, while beneficial for path planning, poses challenges like
computational complexity, demanding substantial resources, requiring careful
hyperparameter selection and involving time-consuming learning iterations to develop
effective navigation strategies in varied environments [24].

In summary, diverse path planning algorithms offer unique advantages for robot
navigation in unknown environments yet face persistent challenges: ensuring safety in
unknown environments using general rules, redundant calculations in consecutive searches
due to a lack of prior knowledge, slow convergence rates and limited dynamic path planning.
Addressing these challenges requires an algorithm enabling efficient navigation in unknown

ACI



environments with strong generalization, rapid convergence and reduced computational
load, such as our introduced DRQL algorithm.

3. Designing the modified Q-learning algorithm with four key components
The Q-learning algorithm has four important elements: state, action, reward and Q-table. The
definition of these elements is specific to the application context of the Q-learning algorithm.
Figure 2 presents reinforcement learning (RL), which is amachine learning paradigm focused
on learning optimal actions through interactions within an environment to achieve a certain
goal. Its framework comprises the following components:

(1) State (s): The current situation or configuration of the environment that the agent
perceives. It represents all the relevant information necessary for decision-making.

(2) Action (a): The choices available to the agent in each state. Actions lead to transitions
from one state to another.

(3) Reward (r): The immediate feedback the agent receives from the environment after
taking an action in a certain state. It quantifies the desirability of the agent’s action.
For example, if a robot navigates to a hazardous location near obstacles, he will
receive a negative reward. On the other hand, reaching the destination gives a
positive reward.

(4) Q-function (Q): Estimates the value of taking a particular action in each state. It helps
in decision-making by evaluating action values.

The RL system operates through an iterative process, where the agent interacts with the
environment, observes states, takes actions, receives rewards and updates its policy and
value functions based on these experiences. The objective is for the agent to learn an optimal
policy that maximizes cumulative rewards over time. This learning occurs through
exploration (trying new actions) and exploitation (using learned knowledge to select the best
actions).

Running example: In Figure 3, the map’s size is specified as 434, and the robot’s
objective is to navigate from its starting position (1,1) to the goal (4,4). The simulation
allows the robot movement in four directions – forward, backward, left and right – while
avoiding collisions with obstacles or the environment’s edges. For recording purposes,

Figure 2.
Framework of

reinforcement learning
system

DRQL
approach in

mobile robotics



state nodes are numbered based on the robot’s exploration sequence. The environmental
state nodes are categorized into four distinct types: the starting point, forbidden points, the
target point and free points. Figure 3 illustrates forbidden points where the obstacle space
is depicted by the black area.

3.1 State space
In this system, the state space is not fixed but dynamically determined by the path meshing
range of the robot. Essentially, the state encapsulates the precise configuration or location of
the robot within this meshing range. Consequently, as the robot traverses its environment,
the state undergoes continuous updates to accurately mirror its evolving position and
configuration, ensuring a real-time representation that enables efficient path planning and
obstacle avoidance within the given dynamic context.

3.2 Action space
The robot’s action space comprises eight distinct movements, each representing a specific
direction for navigation within its environment. These actions encompass standard
movements, including left, right, forward and downward motions, denoted as Actions 1 to
4, respectively. Additionally, the robot can execute diagonal movements to cover a broader
range, with Actions 5 and 6 corresponding to forward-left and forward-right movements and
Actions 7 and 8 representing downward-left and downward-right operations, enabling the
robot to efficiently navigate through its surroundings with flexibility and adaptability.

A ¼ fa1; a2; . . . ; a8g:

Figure 3.
The robot’s path
planning based on
Q-learning algorithm

ACI



3.3 Reward mechanism
A reward function tailored to the agent’s specific real-world application is crafted through an
analysis of the agent’s state following its action selection:

(1) t: This is the number of times the algorithm has been executed.

(2) r(st, at): This is the reward that the agent receives at the current iteration. The reward
function can be designed to encourage the agent to take certain actions or to
discourage it from taking other actions.

(3) st: This is the agent’s current state. The state of the agent is a representation of its
environment and its position in the environment.

An enhanced reward function, considering obstacle proximity, has been proposed to offer a
more dynamic evaluation of the agent’s performance across various situations. Specifically,
the enhanced reward function considers two main scenarios:

(1) Scenario 1: The agent’s actions lead it closer to the target position without
encountering obstacles. In this case, the agent is rewardedwith a small positive value.

(2) Scenario 2: The agent’s actions lead it away from the target position without
collisions. In this case, the agent is punished with a small negative value.

The dynamic reward can be calculated as shown in equation (1).

rðst; atÞ ¼

C1; St ¼ Sg

�C1; dobs ¼ 0

C2 *
dtþ1

D
; dt < dtþ1; dobs ≠ 0

−C2 *
dtþ1

D
; dt > dtþ1; dobs ≠ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

(1)

where.

(1) dt: This is the distance between the agent and the goal location. The reward value
increases as the agent approaches the target location.

(2) dobs: This is the distance between the agent and the nearest obstacle. The closer the
agent is to an obstacle, the lower the reward value.

(3) sg: This is the target state that the agent aims to reach. The target state can be a
specific location or it can be a certain condition that the agent must meet.

(4) C1 and C2: These are constant values that symbolize the rewards obtained by the
agent during its interactions with the environment. These values can be adjusted to
make the reward function sensitive to the agent’s actions (C1>C2).

Equation (1) can be interpreted as follows:

(1) The agent is rewarded for getting closer to the target location;

(2) The agent is penalized for getting closer to an obstacle and

(3) The reward for getting closer to the target location is greater than the penalty for
getting closer to an obstacle.

DRQL
approach in

mobile robotics



3.4 Q-table
The Q-table’s rows represent state nodes within the environment, and the columns represent
possible actions in each of these states. The Q-table’s dimension is m*n, with m representing
the number of states and n representing the number of actions. To obtain the Q-table, the
Bellman equation was used to emulate the agent’s learning trajectory within the Q-learning
algorithm, as described in equation (2):

Qðstþ1; atþ1Þ ¼ ð1 � αÞ * Qðst; atÞ þ α * ½rðst; atÞ þ γ *

maxaðQðstþ1; aÞÞ�
(2)

where:

(1) Q(st, at) is the expected value of taking action at in-state st;

(2) α is the learning rate;

(3) γ is the discount factor;

(4) r(st, at) is the reward received for taking action at in-state st and

(5) Max a(Q(stþ1, a)) is the maximum expected value of taking any action in state stþ1

The DRQL approach for MR path planning that we propose in Algorithm 1, is designed to
facilitateMR path planning in dynamic environments. It takes as input the goal point (Sg) and
environmental information (Oj) and produces learning values (Qm*n). In each episode, the
algorithm initializes Qm*n for all state-action pairs, randomly selects an initial state (st) and
enters a loopwith amaximum iteration count (N). During each iteration, it assesses whether st
is safe or not. If st is unsafe, it selects an action based on obstacle avoidance knowledge; if safe,
it employs a dynamic exploration strategy, where it may choose a random action with
probability ξ or select the best action using Qm*n with probability (1-ξ). The chosen action is
executed, resulting in a reward, and the algorithm updates Qm*n accordingly. This process
repeats until either the goal state (sg) is reached or the maximum iteration count (N) is
exhausted and the final Qm*n values are returned to guide MR path planning in dynamic
environments.

The DRQL algorithm iteratively updates the Q(st; at) values by applying the
Bellman equation, considering the rewards collected at each state node. As the Q-table
converges, the robot acquires the ability to plan the shortest path through its accumulated
knowledge.

The parameters used in the described algorithm 1 for path planning and obstacle
avoidance are presented in Table 1.

Variable Meaning

ξ This variable represents a random number generated between [0, 1]. It is utilized to determine
whether the robot shouldmake a random action choice or opt for an informed decision based on the
Q-values

x x, a random number in the range [0, 1], is compared to ξ. When x < ξ, the algorithm opts for a
random action, encouraging exploration. When x ≥ ξ, it chooses the best action using Q-values,
favoring a more informed decision-making process

Source(s): Author’s own work

Table 1.
Parameters and their
meaning

ACI



Algorithm 1. DRQL for MR path planning
Input:

Goal point, Sg

Environmental information, Oj

Output:
Learning values, Qm*n

Begin
Initialize Qm*n(st, at) to 0 for all state-action pairs (st, at).

For each episode

Set st to a random state from the state set S.

i=0

Generate a random number, ξ between [0, 1]

Generate a random number, x between [0, 1]

While st is not equal to sg and (i<N)

Evaluate the robot’s current state st

If it is near an obstacle then

Choose an action at to avoid obstacle 

end if
If st is at a safe level then

If x < ξ then

Choose a random at in st.

else
Select the best at in st using Qm*n.

End if
End if
Execute action at and receive reward r.

Determine the new state st+1.

Based on Equation (2), update Qm*n(st, at)

i = i+1

Set st to st+1.

End while
End for
Return Qm*n.

End

DRQL
approach in

mobile robotics



4. Simulation
We compare our proposed dynamic reward solution DRQL against a conventional approach
that relies on a static reward mechanism. To facilitate this comparison, we begin by
elucidating the methodology employed for computing the static reward. The static reward
can be calculated as shown in equation (3):

rðst; atÞ ¼

C1; St ¼ Sg

�C1; dobs ¼ 0

C2; dt < dt−1; dobs ≠ 0

−C2; dt > dt−1; dobs ≠ 0

8>>>>>>>><
>>>>>>>>:

(3)

(1) C1, St5 Sg: This condition indicates that if the current state (St) is equal to the goal
state (Sg), a static reward C1 is assigned. This reward is given when the robot reaches
its intended destination without any proximity to obstacles.

(2) -C1, dobs 5 0: If the distance between the robot and the nearest obstacle (dobs) is zero,
meaning there is no separation between the robot and the obstacle, a static reward C1
is given. This situation represents a collision with an obstacle, so a reward is
assigned.

(3) C2, dt < dt-1, dobs ≠ 0: This condition states that if the current distance to the target
location (dt) is less than the previous distance (dt-1) and there is some non-zero
distance (dobs) between the robot and the nearest obstacle, a static reward C2 is
assigned. This reward encourages the robot to get closer to the target while avoiding
obstacles.

(4) -C2, dt > dt-1, dobs ≠ 0: Conversely, if the current distance to the target location (dt) is
greater than the previous distance (dt-1) and there is some nonzero distance (dobs)
between the robot and the nearest obstacle, another static reward C2 is given. This
reward motivates the robot to move further away from obstacles while still
progressing towards the target.

In summary, these static rewards provide a way to guide the robot’s behavior based on its
current state, proximity to the goal and proximity to obstacles, helping it make decisions that
lead to successful path planning and obstacle avoidance.

Table 2 shows the parameters incorporated into Equation (2), i.e. α and γ, and the variables
used in Algorithm 1, such as N and ξ. The specific values are set to control various aspects of
the learning and decision-making process of the robot, such as the balance between
exploration and exploitation.

Variable Value

Learning rate α 0.02
Discount factor γ 0.9
Number of repetitions N 1000
Greedy factor ξ 0.1

Source(s): Author’s own work

Table 2.
Parameters and their
values

ACI



In all experiments, the configuration of MR was always represented by q(x; y), with x and y
representing coordinates. Table 3 describes three configurations (Config1, Config2 and
Config3) of the test environment used for the experiment. All these configurations share a
uniform starting point and endpoint (goal). Each configuration of the test environment
consists of n obstacles called Oj(xj, yj), each obstacle positioned at a coordinate point (xj, yj).
These carefully designed test environments have been designed to thoroughly evaluate and
analyze the effectiveness, performance and accuracy of the DRQL learning algorithm.

Tomaintain the reliability of the experimental results, we iteratively reproduced the same
experiment 20 times. Afterward, we calculate average values that include the number of
moving steps and the average reward. Table 4 provides data on the number of moving steps
required for the MR to reach the endpoint under these three configurations (Config1, Config2
and Config3).

In this context, the “Moving Step Count for SRQL” represents the number of moving steps
the robot takes when using a static reward mechanism. The SRQL, which refers to the static
reward Q-learning algorithm, is very similar to the algorithm previously introduced DRQL,
which differs only in the methodology of the calculation of the reward, which is calculated
statically. Similarly, the “Moving Step Count for DRQL” indicates the number of moving
steps when employing a dynamic reward mechanism.

The key observation here is that the dynamic reward approach results in significantly
fewer steps (lowermoving step count) compared to the static reward approach across all three
configurations (Config1, Config2 and Config3). This reduction in steps indicates that the
dynamic reward strategy is more efficient in guiding the robot to reach the goal point. The
percentages provided (e.g. 9.23, 20.78 and 12.05%) represent the extent to which dynamic
reward reduces the number of steps compared to static reward for each respective
configuration.

Table 5 presents data on the average reward achieved by a MR under different
configurations (Config1, Config2 and Config3).

The key observation here is that, for each configuration, the dynamic reward approach
results in a lower average reward compared to the static reward approach. This difference is
quantified as a percentage reduction in the average reward. For instance, in the first
configuration (Config1), the average reward for the dynamic reward approach is 12% lower
than that for the static reward approach.

However, it’s important to note that despite the lower average reward values, the dynamic
reward strategy is more efficient in terms of path planning and obstacle avoidance, as

Test environment Obstacle O(xi, yi)

Config1 (3,2); (4,8); (10, 3)
Config2 (2,5); (3,3); (6,2); (7,9); (8,1); (10,9); (12,4)
Config3 (1,3); (4,2); (5,8); (9,10); (12,6)

Source(s): Author’s own work

Configuration Config1 Config2 Config3

Moving step count for SRQL 71 96 83
Moving step count for DRQL 52 65 67

Source(s): Author’s own work

Table 3.
Configuration of the

test environment with
information about

obstacles

Table 4.
Moving step count

DRQL
approach in

mobile robotics



indicated by the lower number of moving steps (moving step count) required to reach the
endpoint, which was discussed in a previous explanation. This suggests that the dynamic
reward approach provides a better trade-off between reward and path efficiency.

Figure 4 presents results comparing the performance of two algorithms, DRQL and SRQL,
over a series of iterations. The values represent the accumulated rewards orQ-values for both
algorithms at specific iteration points.

At the beginning of the iterations (Iteration 0), both DRQL and SRQL start with an initial
reward value of 0, which is expected as they have not yet learned the optimal policy.

As the iterations progress, both algorithms begin to learn and improve their Q-values;
however, notable differences emerge. DRQL demonstrates a more rapid learning rate
compared to SRQL. By iteration 40, DRQL achieves aQ-value of 1.3, while SRQL reaches 0.9,
indicating that DRQL learns faster and accumulates higher rewards.

The divergence between the two algorithms continues throughout the iterations. DRQL
consistently outperforms SRQL in terms of accumulated rewards, suggesting that the
incorporation of dynamic reward mechanisms enhances the learning efficiency and
performance of the algorithm compared to the static reward approach. These results
emphasize the effectiveness of dynamic rewards in guiding the learning process of an agent
in a reinforcement learning environment.

5. Conclusion
We introduce innovative solutions to the persistent challenges of long convergence rates and
extensive planning cycles encountered byMR in unknown and complex environments. Using
dynamic rewards in the Q-learning framework called the DRQL, this approach significantly
improves navigation performance. DRQL strategically combines the inherent learning

Configuration Config1 Config2 Config3

Average reward for SRQL 3.5 2.9 3.7
Average reward for DRQL 2.9 2.4 3.1
Reduction 12% 28% 8%

Source(s): Author’s own work

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

Re
w

ar
d

Number of iteraƟon
DRQL

Source(s): Authors’ own work
SRQL

Table 5.
The average reward for
the same configuration

Figure 4.
Comparative analysis
of reward evolution
patterns in SRQL and
DRQL algorithms

ACI



capability of Q-learning with an adaptive and dynamic reward mechanism. As a result, this
methodology reduces the need for a comprehensive exploration and accelerates convergence
rates. Extensive simulations confirm DRQL’s superiority over the existing methods. It
manifests accelerated convergence toward an optimal action strategy that requires shorter
time and exploration steps. In addition, DRQL has consistently obtained higher average
rewards, which means that it is more efficient in road planning in an unknown environment.

In our ongoing research, we are exploring avenues to refine the DRQL approach by
optimizing parameters (α, γ) in Equation (2), focusing on adaptive techniques to dynamically
adjust these values based on real-time feedback.

References

[1]. Wang B, Liu Z, Li Q, Prorok A. Mobile robot path planning in dynamic environments through
globally guided reinforcement learning. IEEE Robotics Automation Lett. 2020; 5(4): 6932-9. doi:
10.1109/lra.2020.3026638.

[2]. Zhou Y, van Kampen EJ, Chu Q. Hybrid hierarchical reinforcement learning for online guidance
and navigation with partial observability. Neurocomputing. 2019; 331: 443-57. doi: 10.1016/j.
neucom.2018.11.072.

[3]. Chang L, Shan L, Jiang C, Dai Y. Reinforcement based mobile robot path planning with improved
dynamic window approach in unknown environment. Autonomous Robots. 2021; 45(1): 51-76.
doi: 10.1007/s10514-020-09947-4.

[4]. Ajeil FH, Ibraheem IK, Azar AT, Humaidi AJ. Grid-based mobile robot path planning using
aging-based ant colony optimization algorithm in static and dynamic environments. Sensors.
2020; 20(7): 1880. doi: 10.3390/s20071880.

[5]. Chang L, Shan L, Jiang C, Dai Y. Reinforcement based mobile robot path planning with improved
dynamic window approach in unknown environment. Autonomous Robots. 2021; 45(1): 51-76.
doi: 10.1007/s10514-020-09947-4.

[6]. Salama OA, Eltaib ME, Mohamed HA, Salah O. RCD: radial cell decomposition algorithm for
mobile robot path planning. IEEE Access. 2021; 9: 149982-92. doi: 10.1109/access.2021.3125105.

[7]. Ravankar AA, Ravankar A, Emaru T, Kobayashi Y. HPPRM: hybrid potential based
probabilistic roadmap algorithm for improved dynamic path planning of mobile robots. IEEE
Access. 2020; 8: 221743-66. doi: 10.1109/access.2020.3043333.

[8]. Orozco-Rosas U, Montiel O, Sep�ulveda R. Mobile robot path planning using membrane
evolutionary artificial potential field. Appl Soft Comput. 2019; 77: 236-51. doi: 10.1016/j.asoc.2019.
01.036.

[9]. Choueiry S, Owayjan M, Diab H, Achkar R. Mobile robot path planning using genetic algorithm
in a static environment. In: 2019 Fourth International Conference on Advances in Computational
Tools for Engineering Applications (ACTEA). IEEE; 2019. p. 1-6.

[10]. Shi K, Wu Z, Jiang B, Karimi HR. Dynamic path planning of mobile robot based on improved
simulated annealing algorithm. J Franklin Inst. 2023; 360(6): 4378-98. doi: 10.1016/j.jfranklin.2023.
01.033.

[11]. Khaksar W, Hong TS, Sahari KSM, Khaksar M, Torresen J. Sampling-based online motion
planning for mobile robots: utilization of Tabu search and adaptive neuro-fuzzy inference
system. Neural Comput Appl. 2019; 31(S2): 1275-89. doi: 10.1007/s00521-017-3069-6.

[12]. Zhang L, Zhang Y, Li Y. Mobile robot path planning based on improved localized particle swarm
optimization. IEEE Sensors J. 2020; 21(5): 6962-72. doi: 10.1109/jsen.2020.3039275.

[13]. Miao C, Chen G, Yan C, Wu Y. Path planning optimization of indoor mobile robot based on
adaptive ant colony algorithm. Comput Ind Eng. 2021; 156: 107230. doi: 10.1016/j.cie.2021.107230.

[14]. Muni MK, Parhi DR, Kumar PB. Improved motion planning of humanoid robots using bacterial
foraging optimization. Robotica. 2021; 39(1): 123-36. doi: 10.1017/s0263574720000235.

DRQL
approach in

mobile robotics

https://doi.org/10.1109/lra.2020.3026638
https://doi.org/10.1016/j.neucom.2018.11.072
https://doi.org/10.1016/j.neucom.2018.11.072
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.3390/s20071880
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.1109/access.2021.3125105
https://doi.org/10.1109/access.2020.3043333
https://doi.org/10.1016/j.asoc.2019.01.036
https://doi.org/10.1016/j.asoc.2019.01.036
https://doi.org/10.1016/j.jfranklin.2023.01.033
https://doi.org/10.1016/j.jfranklin.2023.01.033
https://doi.org/10.1007/s00521-017-3069-6
https://doi.org/10.1109/jsen.2020.3039275
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1017/s0263574720000235


[15]. Szczepanski R, Tarczewski T. Global path planning for mobile robot based on Artificial Bee
Colony and Dijkstra’s algorithms. In: 2021 IEEE 19th International Power Electronics and
Motion Control Conference (PEMC). IEEE; 2021. p. 724-30.

[16]. Li F, Fan X, Hou Z. A firefly algorithm with self-adaptive population size for global path
planning of mobile robot. IEEE Access. 2020; 8: 168951-64. doi: 10.1109/access.2020.3023999.

[17]. Cherroun L, Boumehraz M, Kouzou A. Mobile robot path planning based on optimized fuzzy
logic controllers. New Dev Adv Robot Control. 2019: 255-83. doi: 10.1007/978-981-13-2212-9_12.

[18]. Yu J, Su Y, Liao Y. The path planning of mobile robot by neural networks and hierarchical
reinforcement learning. Front Neurorobotics. 2020; 14: 63. doi: 10.3389/fnbot.2020.00063.

[19]. Wang X, Liu Z, Liu J. Mobile robot path planning based on an improved A* algorithm. In:
International Conference on Computer Graphics, Artificial Intelligence, and Data Processing
(ICCAID 2022), SPIE, 12604; 2023. p. 1093-8.

[20]. Low ES, Ong P, Cheah KC. Solving the optimal path planning of a mobile robot using improved
Q-learning. Robotics Autonomous Syst. 2019; 115: 143-61. doi: 10.1016/j.robot.2019.02.013.

[21]. Lluvia I, Lazkano E, Ansuategi A. Active mapping and robot exploration: a survey. Sensors.
2021; 21(7): 2445. doi: 10.3390/s21072445.

[22]. Pang L, Cao Z, Yu J, Zhang W, Chen X. A collision-free person-following approach based on path
planning. In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA).
IEEE; 2020. p. 327-31.

[23]. Dong Y, Zou X. Mobile robot path planning based on improved DDPG reinforcement learning
algorithm. In: 2020 IEEE 11th International Conference on software engineering and service
science (ICSESS). IEEE; 2020. p. 52-6.

[24]. Zhu K, Zhang T. Deep reinforcement learning based mobile robot navigation: a review. Tsinghua
Sci Technology. 2021; 26(5): 674-91. doi: 10.26599/tst.2021.9010012.

Corresponding author
Atef Gharbi can be contacted at: atef.gharbi@nbu.edu.sa

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

ACI

https://doi.org/10.1109/access.2020.3023999
https://doi.org/10.1007/978-981-13-2212-9_12
https://doi.org/10.3389/fnbot.2020.00063
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.3390/s21072445
https://doi.org/10.26599/tst.2021.9010012
mailto:atef.gharbi@nbu.edu.sa

	A dynamic reward-enhanced Q-learning approach for efficient path planning and obstacle avoidance in mobile robotics
	Introduction
	Related works
	Designing the modified Q-learning algorithm with four key components
	State space
	Reward mechanism
	Q-table

	Simulation
	Conclusion
	References


