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Abstract

Purpose –Mouth segmentation is one of the challenging tasks of development in lip reading applications due
to illumination, low chromatic contrast and complex mouth appearance. Recently, deep learning methods
effectively solved mouth segmentation problems with state-of-the-art performances. This study presents a
modified Mobile DeepLabV3 based technique with a comprehensive evaluation based on mouth datasets.
Design/methodology/approach – This paper presents a novel approach to mouth segmentation by Mobile
DeepLabV3 technique with integrating decode and auxiliary heads. Extensive data augmentation, online hard
example mining (OHEM) and transfer learning have been applied. CelebAMask-HQ and the mouth dataset
from 15 healthy subjects in the department of rehabilitation medicine, Ramathibodi hospital, are used in
validation for mouth segmentation performance.
Findings –Extensive data augmentation, OHEMand transfer learning had been performed in this study. This
technique achieved better performance on CelebAMask-HQ than existing segmentation techniques with a
mean Jaccard similarity coefficient (JSC), mean classification accuracy and mean Dice similarity coefficient
(DSC) of 0.8640, 93.34% and 0.9267, respectively. This technique also achieved better performance on the
mouth dataset with a mean JSC, mean classification accuracy and mean DSC of 0.8834, 94.87% and 0.9367,
respectively. The proposed technique achieved inference time usage per image of 48.12 ms.
Originality/value – The modified Mobile DeepLabV3 technique was developed with extensive data
augmentation, OHEM and transfer learning. This technique gained better mouth segmentation performance
than existing techniques. This makes it suitable for implementation in further lip-reading applications.

Keywords Mouth segmentation, Deep learning, MobileNetV2, Mobile DeepLabV3

Paper type Full length article

1. Introduction
Mouth segmentation is an important process in lip reading that can be applied in several
applications, such as video conferencing, lip-synching, visual face recognition, speech
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recognition andmedical disease detection [1–4]. The accuracy of each application depends on
segmentation performances. However, mouth segmentation is challenging in an
unconstrained environment due to luminance variation, low chromatic contrast, complex
mouth appearance, fitness, occlusion, reflection and cosmetic agents on the lip [1–3, 5 and 6].
Currently, various techniques are used for separating the lip region from the background,
such as contour-based and region-based approaches.

However, several challenges still exist, such as overlapping between the lip and non-lip
color, and no obvious color gradient between lip and skin [3, 5 and 6].

After the introduction of AlexNet [7], the first end-to-end multi-resolution deep learning-
based semantic segmentation technique is fully convolutional network (FCN) [8]. It achieves
higher accuracy than conventional techniques. Later, mouth segmentation techniques have
been continuously developed. Newer techniques can segment without color space
transformation, manual feature extraction or even sliding window in pixel-wise prediction.

In this paper, we proposed a solution of the automatic deep learning-based mouth
segmentationmethod evaluated on the publicly available dataset as CelebAMask-HQ [9], and
the mouth dataset collected from 15 healthy people, annotated by four personnel in
rehabilitation medicine, Ramathibodi hospital, and verified by two rehabilitation doctors.
We applied transfer learning from COCO-Stuff [10] to CelebAMask-HQ dataset and applied
from CelebAMask-HQ to the mouth dataset.

The key contribution of this paper is that we validated the performance of the Mobile
DeepLabV3-based technique on mouth segmentation on the publicly available dataset and
the self-collected mouth dataset from 15 healthy people. We integrated decode and auxiliary
heads on Mobile DeepLabV3 to enhance supervision during training. This study applied
extensive data augmentation and online hard example mining (OHEM) to relieve class
imbalance. Our proposedmodel achieves better performance than the standard segmentation
techniques. The second contribution is the application of transfer learning, taking the
pretrained model on COCO-Stuff to CelebAMask-HQ, and the model trained on the
CelebAMask-HQ to the mouth dataset, using a lesser amount of data for re-training.
Moreover, our proposed solution does not require preprocessing and postprocessing. Thus,
this can be easily integrated into mouth segmentation-related applications.

The rest of this paper is organized as follows: Section 2 describes the related work. Section
3 describes the materials and methods. Section 4 provides the experimental results. Section 5
discusses the results. Section 6 draws the conclusion.

2. Related work
Mouth segmentation techniques have been actively researched for solving an unconstrained
condition on various illumination, mouth shape, reflection, and cosmetic agents on the lip
[1–3, 5 and 6]. These can be separated into three categories: contour-based approach, region-
based method and deep learning-based method.

First, the contour-based technique separates the lip and the background by a gradient
between the lip and the non-lip pixels. Ozgur et al. [11] proposed PCA (Principal Component
Analysis) template matching and K-means algorithm for lip corner detection. The likelihood of
segmented lip pixels is estimated byGaussianmixturemodel from the detected lip corner.Malek
et al. [12] applied an active contour and parametric model to get lip contour. Then, a level set
method finds the key points to position the result of the parametric model to fit lip deformity. Lu
andLiu [2] proposed a localized active contourmodel froman illumination equalizedRGB image,
and the combination of the U component on the CIE-1975 CIELUV image, and C2 and C3
components from discrete Harley transformed image. This study applied the initial rhombus
contour to the closed mouth and the combined semi-ellipses to the open mouth. Malek and
Messaoud [13] proposed twomethods. First, the authors proposed lip landmark detection by the
geodesic active contour and a distance level set evolutionmodel with a combination of Gaussian,
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median and average filters [13]. Next, a parametric model based on the cubic curves estimates a
lip deformity from a lip landmark [13].

Second, the region-based approach applies clustering or thresholding techniques to separate
between a lip and a background. Sandhya et al. [14] applied Otsu’s thresholding and K-means
clustering from the grayscale lip-printed image. The separation of K-means clusters is based on
Euclidean distance. Wang et al. [6] proposed multi-class and shape-guided fuzzy C-means (MS-
FCM) from CIE-1975 CIELAB and CIELUV. The pixel vector from the selected channels L*, a*,
b*, u* and v*was separated between the lip and the complex backgrounds like skin, beards and
mustaches. Gritzman et al. [3] applied shape-based adaptive thresholding (SAT) through two
processes. First, this study used linear discriminative analysis with support vector regression to
output segmentation error. Next, this study adjusted the color-based threshold value to estimate
the best value to reduce the segmentation error until it was acceptable.

The third approach is the deep learning-based technique. Ju et al. [5] proposed lip
segmentation network (LSN) which combined features from two architectures. First, FCN-based
architecture maps RGB to a binary image. Second, the proposed CNN architecture based on
average pooling with a 1 3 1 convolution kernel is employed to reduce the bad annotation
influence. Guan et al. [15] proposed lip segmentation fuzzy CNN (LSFCNN), the U-net-like
architecture with fuzzy learning modules. Zhang and Zhao [16] proposed a U-net-based local
feature extractor to extract visual information from lip images with complex environmental
changes and different facial attributes. They also proposed a graph-based adjacent feature
extractor to effectively capture features of lipsbetween adjacent frames. Guan et al. [17] proposed
LSDNet, the combination between complex teacher and student networks. This combines three
loss functions: cross-entropy, distillery and remedy losses. LSDNet increases segmentation
performance, inference speed and segmentation ability in hard samples.

Nowadays, little research applies end-to-end CNN with an auxiliary head, extensive data
augmentation, OHEM and transfer learning to solve a mouth segmentation problem in an
unconstrained condition. Moreover, no research studies on lip and teeth segmentation
performance, and computational complexity. Then, this paper validates Mobile DeepLabV3-
based techniques on lip and teeth segmentation performance and validates computational
complexity by providing model parameters, model size and time usage per image.

3. Material and methods
3.1 Dataset
The first experimentwas applied to CelebAMask-HQ [9], a large-scale publicly available high-
resolution face dataset with fine-masked labels of 19 facial component categories such as eye,
nose and mouth regions. CelebAMask-HQ has high-quality control from several rounds of
verification and refinement of each annotated mask to reduce noise. The dataset contains
30,000 face images of 512 3 512 resolution.

The next experimental study was applied to the collected videos from 15 healthy people
working in the department of rehabilitation medicine at Ramathibodi hospital. This experiment
was approved by the institutional review board of Ramathibodi hospital, Mahidol University
(certificate of approval (COA) number. MURA2021/73). The inclusion criteria were as follows:

(1) The subject requires to be a Thai.

(2) The subject should be between 18 and 80 years old.

(3) The subject works in the Faculty of Engineering at Mahidol University or the
department of Rehabilitation Medicine at Ramathibodi hospital.

(4) The subject does not have a neckmovement disorder or a history of cervical surgeries
or trauma.
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The exclusion criteria consist of a relationship with the research team, and unavailability
during testing. Consent was obtained from all subjects for participating in the experiment.

The videos were acquired from the smartphone camera and the Razer webcam in an
unconstrained environment in the department of rehabilitation medicine at Ramathibodi
hospital. We extracted each video frame and saved it as a picture. The extracted frame was
precisely annotated with Universal Data Tool (v.0.14.17) by four personnel working in the
same department under the supervision of two rehabilitation doctors. Precise annotationwith
high-quality control and supervision reduces noise which affects training performance [5].
This dataset possesses 15,495 images.

3.2 CNN architecture
The model architecture used in this study is based on Mobile DeepLabV3 [18, 19]. It consists
of three parts, i.e., the backbone, the auxiliary head and the decode head (Figure 1). First, the
backbone architecture is derived from MobileNetV2 [19].

Second, an auxiliary head [20, 21] processes the output of the 5th inverted residual block
for training optimization assistance. The reason is a vanishing gradient problem on the
deeper network decreasing the gradient to near zero, which prevents fine-tuning parameters.
Placing an auxiliary head on shallower layers increases a backpropagation signal, and
additional regularization. Thus, an auxiliary head increases classifier performance from the
insight of the InceptionNet [21]. This head consists of a 3 3 3 convolutional layer with an
output channel of 256, a dropout rate of 0.1, and a 1 3 1 convolutional layer. This head
outputs two classes for CelebAMask-HQ and three classes for themouth dataset. This head is
abandoned during inference.

Third, the decode head is the main architecture head that processes the output of the 7th
inverted residual block to output the same classes of an auxiliary head. This head consists of
four steps, i.e., Atrous spatial pyramid pooling (ASPP) [18, 22], a 33 3 convolution layer with
an output channel of 512, a dropout rate of 0.1, and a 1 3 1 convolutional layer. ASPP is a
powerful tool to capture semantic information on various scales from the computed feature
maps by the model’s receptive field enlargement. It consists of five parallel paths. The four
parallel paths are Atrous convolutions [18, 22] containing three 33 3 convolution layers with
different dilatation rates of 12, 24 and 36, and one 1 3 1 convolution layer with a dilatation
rate of 1. The last path is the image-level feature extraction which has three processes: a 13 1
2D global average pooling, a 1 3 1 convolution layer with an output channel of 512, and a
resize layer with bilinear interpolation to the same image resolution before passing through
the image-level feature extraction. The output of five parallel paths is concatenated before
passing through a 3 3 3 convolutional layer.

3.3 Methods
The first experiment was the assessment of CelebAMask-HQ [9] prepared by four processes.
First, the lip area was cropped by taking the masked area between the upper and lower lips to
take the coordinates of extreme points. Second, the dataset was reannotated by labeling the
upper and lower lip-masked areas as the lip, and the others as the background. This dataset
contains 29,928 background areas and 29,505 lip areas. Third, the reannotated images were
resized to the resolution of 640 3 480 pixels. Last, the dataset was separated from 30,000
images into 20,950 training, 5,987 validation, and 2,991 testing images. A total of 72
remaining images were excluded due to errors during finding extreme points of the
lip-masked areas which are not available.

This experiment appliedMobile DeepLabV3 [18, 19] pretrained by the COCO-Stuff dataset
[10] to train with the training subset and validate with the validation subset. This network
was trained with Adam optimizer for 140 epochs. The learning rate and weight decay were
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0.001 and 0.0001, respectively. The initial random seedwas set to 0.We appliedOHEM [23, 24]
for the segmented pixel area with a confidence value of less than 0.7. OHEM filters the
difficult segmentation pixels with a low confidence value for backpropagation. The neglected
class during training provides a high loss enough until reaching the probability of being
sampled. Thus, OHEM mitigates a large imbalance between the annotated objects and the
background on the mouth dataset.

The loss function in the main and auxiliary heads is the combination of two components:
cross-entropy (LCE) and dice losses (LDice).

The cross-entropy loss (LCE) is the sum of cross-entropy losses in every class between the
ground truth ðyiÞ and prediction calculated by the softmax function of the normalized
exponential function of the prediction value in the current class (pi). The numerator is the sum
of the exponential function of prediction values in each class (zc). The total number of classes
is represented as C. The cross-entropy loss is shown in equation (1).

LCE ¼ −

XC
i¼1

yilog
epi

PC
c¼1

ezc

0
BBB@

1
CCCA: (1)

The dice loss (LDice) is the average of the dice coefficient in every class. In each class, the sum
of correctly predicted boundary pixels is the numerator, and the sum of the total boundary
between the prediction and the ground truth is the denominator. pi represents the pixel values
of the prediction, and gi represents the pixel values of the ground truth. Nc represents the
number of pixels in each class. The total number of classes is represented asC. The dice loss is
shown in equation (2).

Figure 1.
The mobile
DeepLabV3

segmentation
technique
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LDice ¼ 1

C

XC
c¼1

2
PNc

i pigiPNc

i pi
2 þPNc

i gi2
(2)

The final loss (Ltotal) for the main and auxiliary heads can be calculated as shown in
equation (3).

Ltotal ¼ LCE þ 3LDice (3)

After the training, the model was tested with the testing dataset, and compared to the
baselines (Part A of LSN [5], LSFCNN [15], LSDNet [17], U-Net [16, 25], FCN [8], PSPNet [20],
Residual U-Netþþ [26] and DeepLabV3 [18]) for segmentation accuracy. For LSN [5], only
Part A was selected in this study because the author provided insufficient details on the
structure of part B.

The next experiment was the assessment of the dataset collected from healthy people,
containing 15,495 images, and preprocessed in three steps. Firstly, this dataset was annotated
by the personnel working in the department of rehabilitation medicine to create the masked
image in three classes: the lip, the teeth and the background areas. Then, this dataset contains
15,495 background areas, 15,487 lip areas and 4,894 teeth areas. Secondly, the annotated
images were resized to 640 3 480 pixels. Lastly, the dataset was separated into 10,851
training, 3,097 validation and 1,547 testing images. The pretrained model from the previous
experiment was applied to train with the training subset with the same training parameters
as in the previous experiment and validate with the validation subset After training, the
testing subset was used in the evaluation and compared to the baselines for segmentation
accuracy except for LSFCNN and LSDNet. The main reason for the exclusion is that the
model architecture and loss function were specially designed for lip segmentation, which was
not flexible for including teeth.

Data augmentation [27] is applied on training sets of both datasets, used for all techniques
to improve the sufficiency and diversity of training data by synthetic dataset generation. The
model with data augmentation copes better with the variety of colors, illumination and
geometric transformation. Data augmentation consists of three steps: random crop, random
flip and photometric distortion which applied random brightness, random contrast, BGR-to-
HSV conversion, random saturation, random hue, HSV-to-BGR conversion and random
contrast.

The third experiment was an ablation study. The same method in second experiment is
applied for the proposed model without ASPP, an auxiliary head, transfer learning and
OHEM. The result was compared to the proposed model.

Three experiments were applied using PyTorch (v.1.11.0), mmCV (v.1.5.2) and
mmSegmentation (v.0.22.1) deep learning libraries in Python (v3.8.10). A CUDA-enabled GPU
(NVIDIA Geforce RTX 3060) with 12GB RAM was applied for training and testing processes.

The performance evaluation metrics in the three experiments’ validation and testing
phase were the mean Jaccard similarity coefficient (mean JSC), the mean classification
accuracy and the mean Dice similarity coefficient (mean DSC).

The fourth experiment was the performance evaluation. We performed via Intel Core i7-
4770 with a clock speed 4.50GHz and NVIDIA RTX 3060 to output the number of model
parameters, themodel size inMB and the inference time usage per image inmilliseconds (ms).

4. Results
Figures 2 and 3 show the training and validation graphs of CelebAMask-HQ and the collected
dataset from healthy people. This illustrates two learning graphs including training cross-
entropy and dice losses, which shows early convergence on all training graphs since we
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applied transfer learning from COCO-Stuff, the large dataset, to CelebAMask-HQ, and from
CelebAMask-HQ to the same domain on the mouth dataset. For validation on CelebAMask-
HQ, the mean JSC mean classification accuracy and DSC achieved up to 0.8698, 93.66% and
0.9300, respectively. For validation on the mouth dataset, the mean JSC, mean classification
accuracy and DSC achieved up to 0.8382, 93.39% and 0.9067, respectively.

The first experiment result on the testing subset of CelebAMask-HQ is shown in Table 1.
Mobile DeepLabV3 demonstrated promising results, achievingmean JSC, mean classification
accuracy, and mean DSC of 0.8640, 93.34% and 0.9267, respectively. The results
demonstrated statistically significant improvement compared to the baselines (p < 0.05).
An example of the ground truth images, labels and segmentation results is shown in Figure 4.

The second experiment result on the testing subset of the collected dataset is shown in
Table 2. Mobile DeepLabV3 demonstrated promising results, achieving the mean JSC,
classification accuracy and mean DSC of 0.8834, 94.87% and 0.9367, respectively. This
technique demonstrated statistically significant improvement to the baselines (p < 0.05)
except for DeepLabV3 on Mean JSC and DSC and residual U-Netþþ on DSC. An example of
the ground truth images, labels and segmentation results is shown in Figure 5.

The third experiment result shown in Table 4 is an ablation study of the testing subset of
the created dataset. Mobile DeepLabV3 with ASPP, an auxiliary head, transfer learning
approach and OHEM. Statistical analysis is applied to evaluate the significant difference
between each study compared to the proposed model (p < 0.05).

Fourth, the performance evaluation result on mouth segmentation performance is shown
in Table 3. Mobile DeepLabV3 has a lower number of parameters and a smaller model size
than the baselines except for Part A of LSN [5], LSFCNN [15], LSDNet [17] and residual
U-Netþþ [26]. This model achieves faster inference time usage per image than the baselines
except for Part A of LSN, LSFCNN and LSDNet.

5. Discussion
From our experimental results, Mobile DeepLabV3 outperforms Part A of LSN, LSFCNN,
LSDNet, DeepLabV3, FCN, U-Net, PSPNet and residual U-Netþþ with higher classification
accuracy, higher mean DSC andmean JSC. Moreover, Mobile DeepLabV3 achieves the fastest
segmentation speed except for Part A of LSN, LSFCNN and LSDNet.
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Superior performance arises from five factors: ASPP [18, 22], an auxiliary head [20, 21],
MobileNetV2 [19], OHEM [23, 24] and transfer learning [28].
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Techniques
Mean classification

accuracy (%)
Mean Jaccard similarity
coefficient (mean JSC)

Mean Dice similarity
coefficient (mean DSC)

Part A LSN [5] 81.95 0.6717 0.8022
LSFCNN [15] 82.93 0.7346 0.8431
U-Net [16, 25] 88.57 0.7825 0.8771
LSDNet [17] 92.51 0.8575 0.9250
FCN [8] 92.89 0.8543 0.9211
PSPNet [20] 92.50 0.8349 0.9097
Residual U-Netþþ
[26]

92.87 0.8535 0.9206

DeepLabV3 [18] 93.21 0.8612 0.9097
Mobile DeepLabV3
[18, 19]

93.34 0.8640 0.9267

Figure 3.
The validation graph
on the validation
subset of CelebAMask-
HQ and the collected
dataset from 15 healthy
people

Table 1.
The segmentation
result of the testing
subset of the
CelebAMask-HQ
dataset
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First, ASPP [18, 22] enables capturing semantic information on various scales by themodel’s
receptive field enlargement in the different dilatation rates on Atrous convolution [16, 20].

Second, an auxiliary head [20, 21] in the intermediate layer assists the training process by
back propagation through the shallow layers. This prevents the gradient vanishing problem
[20, 21].

The third factor is MobileNetV2 [19] including an inverted residual block that has a linear
bottleneck. The bottleneck transfers the necessary information between residual blocks to
decrease information and performance loss from the non-linearity transformation property
from ReLU6.

Fourth, OHEM [23, 24], filters the difficult segmentation pixels with a low confidence value
for backpropagation. The neglected class during training provides a high loss enough until
reaching the probability of being sampled.

Fifth, the network-based transfer learning approach [28] applies the reusability and
transferability properties of a trained deep-learning model. This mitigates a large amount of
dataset requirement on a limited amount of data in the mouth dataset for training.

From Table 4, ASPP, an auxiliary head, OHEM and transfer learning lead to increase
mouth segmentation performance compared to the model without these components.
Moreover, fromTables 1–3,MobileNetV2 positively reinforcesmouth segmentation accuracy
with a reduction of computational complexity and memory requirement.

Techniques
Mean classification

accuracy (%)
Mean Jaccard similarity
coefficient (mean JSC)

Mean Dice similarity
coefficient (mean DSC)

Part A of LSN [5] 66.80 0.5354 0.6628
U-Net [16, 25] 80.47 0.7497 0.8470
FCN [8] 94.11 0.8764 0.9324
PSPNet [20] 93.18 0.8777 0.9334
Residual U-Netþþ
[26]

92.30 0.8612 0.9274

DeepLabV3 [18] 94.07 0.8841 0.9371
Mobile DeepLabV3
[18, 19]

94.87 0.8834 0.9367

Figure 4.
Ground truth images

and labels, and
segmentation results

on the testing subset of
the CelebAMask-HQ
dataset are displayed
in 11 columns: ground
truth images, ground
truth segmentation
labels, segmentation

results from Part A of
LSN [5], LSFCNN [15],
U-Net [16, 25], LSDNet
[17], FCN [8], PSPNet

[20], Residual
U-Netþþ [26],

DeepLabV3 [18] and
Mobile DeepLabV3

[18, 19]

Table 2.
The segmentation

result of the testing
subset of the collected
dataset from healthy

people
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Figures 4 and 5, show satisfactory qualitative results ofMobile DeepLabV3 [16, 17]. However,
Mobile DeepLabV3 still misclassified tongue, oral mucosa, skin and nail as the lip area due to
color similarity to the lip, no obvious RGB color difference, low chromatic contrast, occlusion,

Techniques Parameters Model size (MB) Inference time per image (ms)

Part A of LSN [5] 44,247 0.55 47.17
LSFCNN [15] 10,332,236 39.50 45.40
LSDNet [17] 2,906,400 12.00 25.70
FCN [8] 49,485,414 568.30 78.00
U-Net [16, 25] 29,060,806 332.70 299.37
PSPNet [20] 48,963,174 560.80 74.74
Residual U-Netþþ [26] 17,618,663 201.00 281.50
DeepLabV3 [18] 68,100,710 799.80 91.82
Mobile DeepLabV3 [18, 19] 18,589,702 213.10 48.12

ASPP
An auxiliary
head

Transfer
learning OHEM

Mean
classification
accuracy (%)

Mean Jaccard
similarity

coefficient (mean
JSC)

Mean Dice
similarity

coefficient (mean
DSC)

Value p-value Value p-value Value p-value

U U U U 94.87 – 0.8834 – 0.9367 –
✗ U U U 93.88 0.00 0.8826 0.00 0.9362 0.00
U ✗ U U 90.64 0.00 0.8565 0.00 0.9195 0.00
U U ✗ U 94.31 0.00 0.8827 0.00 0.9364 0.00
U U U ✗ 93.80 0.00 0.8767 0.00 0.9327 0.00

Note(s): The first row provides the segmentation result from the proposed method

Figure 5.
Ground truth images
and labels, and
segmentation results
on the testing subset of
the collected dataset
are displayed in 9
columns: ground truth
images, ground truth
segmentation labels,
and segmentation
results from Part A of
LSN [5], U-Net [16, 25],
FCN [8], PSPNet [20],
Residual U-Netþþ
[26], DeepLabV3 [18]
and Mobile
DeepLabV3 [18, 19]

Table 3.
Performances of mouth
segmentation
regarding a number of
parameters, a model
size and inference time
usage per image

Table 4.
The segmentation
result on ablation
studies of the testing
subset of the collected
dataset

ACI



reflection and high variations of illumination and lip color [1–3, 5, 6]. These require further
studies for dataset preparation and mouth segmentation model modification to improve
segmentation performance.

Compared with the conventional techniques, this technique does not require
preprocessing, and lip contour initialization and finding. This benefits from automatic
feature extraction found in deep learning. It does not require additional conventional modules
like fuzzy units [13] which increases computational complexity.

Compared to the baselines, Mobile DeeplabV3 [16, 17] is better. All baselines do not have
MobileNetV2 as the backbone with an auxiliary head for supervision, and OHEM. Almost all
baselines do not have ASPP and transfer learning except for DeepLabV3 [16] and LSDNet,
respectively. The lack of segmentation performance improvement factors leads to
deteriorating segmentation accuracy. Moreover, Part A of LSN [4], LSFCNN [13], and
U-net-based techniques [14, 23, 24] performed worst. They achieved the lowest segmentation
accuracy compared to the other baselines, andMobile DeepLabV3 [16, 17]. Theymisclassified
the inside and outside mouth areas as the lip and teeth.

6. Conclusion
In this paper, we proposed the mouth segmentation technique based on the Mobile
DeepLabV3 technique to handle this problem by application ofMobileNetV2 as the backbone
architecture with the decode head based on ASPP and the auxiliary head, and with the
extensive data augmentation, the application of OHEM to relieve a class imbalance problem
and the transfer learning approaches from COCO-Stuff to CelebAMask-HQ, and from this
dataset to the mouth dataset. Among the baseline techniques, the proposed method has been
verified to be more accurate and faster in inference speed than others for the mouth
segmentation problem. This technique is suitable for implementation in further lip-reading
applications, visual face recognition, speech identification, video conference and medical
disease detection.
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