https://www.emerald.com/insight/2210-8327 .htm

The current issue and full text archive of this journal is available on Emerald Insight at:

Design of a small-scale and
failure-resistant IaaS cloud
using OpenStack

Samuel Heuchert
Dakota State University, Madison, South Dakota, USA

Bhaskar Prasad Rimal

The Beacom College of Computer and Cyber Sciences, Dakota State University,
Madison, South Dakota, USA

Martin Reisslein
School of Electrical, Computer, and Energy Engineering, Avizona State University,
Tempe, Avizona, USA, and

Yong Wang
The Beacom College of Computer and Cyber Sciences, Dakota State University,
Madison, South Dakota, USA

Abstract

Purpose — Major public cloud providers, such as AWS, Azure or Google, offer seamless experiences for
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). With the
emergence of the public cloud’s vast usage, administrators must be able to have a reliable method to provide the
seamless experience that a public cloud offers on a smaller scale, such as a private cloud. When a smaller
deployment or a private cloud is needed, OpenStack can meet the goals without increasing cost or sacrificing
data control.

Design/methodology/approach — To demonstrate these enablement goals of resiliency and elasticity in
[aaS and PaaS, the authors design a private distributed system cloud platform using OpenStack and its core
services of Nova, Swift, Cinder, Neutron, Keystone, Horizon and Glance on a five-node deployment.
Findings — Through the demonstration of dynamically adding an IaaS node, pushing the deployment to its
physical and logical limits, and eventually crashing the deployment, this paper shows how the PackStack
utility facilitates the provisioning of an elastic and resilient OpenStack-based Iaa$S platform that can be used in
production if the deployment is kept within designated boundaries.

Originality/value — The authors adopt the multinode-capable PackStack utility in favor of an all-in-one
OpenStack build for a true demonstration of resiliency, elasticity and scalability in a small-scale IaaS. An all-in-
one deployment is generally used for proof-of-concept deployments and is not easily scaled in production
across multiple nodes. The authors demonstrate that combining PackStack with the multi-node design is
suitable for smaller-scale production IaaS and PaaS deployments.

Keywords Business enablement, Cloud computing, Distributed systems, High availability, OpenStack,
Scalability
Paper type Technical paper

© Samuel Heuchert, Bhaskar Prasad Rimal, Martin Reisslein and Yong Wang. Published in Applied
Computing and Informatics. Published by Emerald Publishing Limited. This article is published under
the Creative Commons Attribution (CCBY 4.0) licence. Anyone may reproduce, distribute, translate and
create derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this licence may be seen at http://
creativecommons.org/licences/by/4.0/legalcode

The authors would like to thank the OpenStack Foundation.

Funding: This research was supported by the State of South Dakota Board of Regents’ Competitive
Research Grant.

IaaS cloud
using
OpenStack

Received 25 April 2021
Revised 22 July 2021
Accepted 26 August 2021

C

Applied Computing and
Informatics

Emerald Publishing Limited
eISSN: 2210-8327

P-ISSN: 2634-1964

DOI 10.1108/ACI-04-2021-0094

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-04-2021-0094

ACI

1. Introduction

In the present day, information technology (IT) requirements change rapidly. This includes
infrastructure and platforms that support development and operations in an organization.
In order to fulfill the dynamic nature of these requirements, including, but not limited to,
on-demand virtual machines, development platforms and production platforms; resilient and
elastic infrastructure and platforms must be available on-demand for developers. Cloud
computing is a solution to such problems because it allows for geographically-unique servers
that can be configured redundantly on a large scale in order to provide low-cost, elastic
platforms for development and operations tasks [1-4].

While there are public clouds available to provide such infrastructure and platform
services [5], there are situations that require cloud services to be administered on-premise
and on a smaller scale. Whether it is used for the purpose of compliance, data retention,
ease of administration or cost reduction; having an on-premise cloud infrastructure can
enable business processes in many ways. One such way that is pervasive in many modern
practices is the need for seamless resilience and elasticity for end users, in most cases for
in-house developers. The public clouds, such as Azure and AWS, do this very well with
little to no knowledge from the end user due to their vast size and allow for a rich feature set
to be produced and computing instances to be resilient and elastic [5]. However, public
clouds are often black boxes and are proprietary to the provider. In order to provide the
same seamless features in a private cloud deployment, OpenStack can be used [6, 7].
OpenStack is a platform that controls multiple types of resources, often called nodes, in
order to provide different cloud services. For example, one of the services is the compute
service of Nova that allows users to create virtual machine instances as needed [8]. These
virtual machines can be started to provide IaaS or PaaS for developers and allow much of
the administration workload to be removed from the development and operations
department.

This paper focuses on building a resilient, elastic private cloud using OpenStack while
concentrating on infrastructure as a service (IaaS) and platform as a service (PaaS). In this
private cloud deployment, OpenStack’s elasticity features will be used in order to
demonstrate how to provide a seamless user experience when accessing IaaS and PaaS in
OpenStack. To do this, an all-in-one OpenStack deployment will zof be used so as to avoid
the lack of scalability [9]. While private clouds usually offer a smaller feature set than
public clouds [5], such a limitation is an advantage for IaaS and PaaS offerings to enable
the business. We selected the PackStack utility as a deployment method to demonstrate
how a proof-of-concept tool can be used to provide a small-scale deployment with
high rates of resiliency and elasticity. The Packstack utility allows for IaaS and PaaS to
be scaled by simply changing one configuration file. While not recommended in a large-
scale deployment due to a lack of further customization, the easy-to-use nature of
Packstack’s [aaS and Paa$S scalability features allow it to be utilized on a smaller-scale by
not requiring in-depth knowledge of OpenStack deployment commands. This paper
focuses on a small-scale deployment that can be imitated by small companies to provide a
public cloud-like experience for end users who need the IaaS and PaaS realms of the
public cloud.

In this paper, the small-scale aspect is directly applied by focusing on providing IaaS and
PaaS options within an organization. The control, storage, networking, compute, identity and
images services will be combined into one or more nodes that are spread across the
deployment in order to provide a resilient and elastic private cloud deployment using
OpenStack. The motivation of the paper is to demonstrate how OpenStack can be useful on a
small scale while planning for future growth. The term “small-scale deployment” is used in
this paper to describe a [aaS and PaaS cloud environment where advanced features, such as
billing or analytics are not needed.

The contributions of this paper are summarized are follows:

(1) Providing a comprehensive tutorial outlining how to build an OpenStack-based
private cloud that can be used on a small scale while leaving room for future growth.

(2) Demonstrating how a proof-of-concept tool, such as PackStack (a utility that uses
Puppet modules to deploy various parts of OpenStack on multiple pre-installed
servers), can be used to create a failureresistant deployment in small-scale
production scenarios to deploy OpenStack.

(3) Stress testing an OpenStack deployment to accurately measure the expected
performance against the actual performance. Note that stress-testing is very unique
in this study and has not been previously investigated in-depth in such a specific type
of deployment.

2. Background

The public cloud provides a rich feature set when providing both IaaS and PaaS. However, it
is not always feasible for a business to relinquish full control over the data and infrastructure
due to compliance, retention or cost [10]. Numerous business cases and applications may
require strict full local (private) control over the data and infrastructure [11-14], yet may pose
substantial computing demands, e.g. for document management [15, 16], image processing
[17, 18], surveillance applications [19], education system management [20, 21] and process
simulation [22]. This is where the private cloud can come into play for both IaaS and PaaS.
Hosting traditional infrastructure and platforms on-premises usually requires manual
mtervention for infrastructure resources, such as virtual machines to be scaled and for
software development platforms, e.g. Eclipse, NetBeans, Visual Studio or web server shells, to
be installed for software developers. In order to provide the enabling nature of the public
cloud, IaaS and PaaS can be provided using OpenStack. When software developers are
enabled with resilient and elastic development and production environments, they will have
greater efficiency [23]. In addition to increasing efficiency, resilient and elastic development
and production environments are also cost-effective in the aspects of power usage, central
processing unit (CPU) usage and memory usage because instances of infrastructure and
platforms are able to be powered on and off at appropriate times.

2.1 OpenStack

OpenStack is an open-source cloud platform. As the OpenStack community grows, the
offered components grow in number as well. This paper focuses on seven core components in
the OpenStack in order to provide Iaas and PaaS. Figure 1 shows a common deployment
model referenced in the OpenStack community.

IDENTITY
©@0| DASHBOARD
S — SERVICE
B (Horizon)
COMPUTE BLOCK STORAGE NETWORKING IMAGE SERVICE OBJECT STORAGE m
00033 - ‘/O .
30001) = & Xt
b= o) (==
(Nova) _— (Cinder) —_— (Neutron) — (Glance) _— (Swift) — (Keystone)

IaaS cloud
using
OpenStack

Figure 1.

Illustration of
OpenStack deployment
model for [aaS with
seven core OpenStack
components

ACI

(1) Compute (Nova): Provides a mechanism to provision instances for computing, also
known as virtual servers.

(2) Block storage (Cinder): Provides a mechanism to present storage resources to be used
by Nova. On the backend, Cinder virtualizes the management of devices that are used
for block storage so that the end-users can consume the resource without knowledge
of where the storage is physically located.

(3) Networking (Neutron): Provides network as a service between network interface
devices and the OpenStack services, such as Nova.

(4) Image service (Glance): Provides the service of being able to upload and discover
assets that can be used with other services. For example, Glance provides pre-
configured images for compute instances.

() Object storage (Swift): Provides a highly available and distributed storage for objects
or blobs.

(6) Identity service (Keystone): Provides client authentication, service discovery and
multi-tenant authorization through the OpenStack-specific API Keystone can use a
wide array of protocols, such as the Lightweight Directory Access Protocol (LDAP),
OAuth, Security Assertion Markup Language (SAML) and OpenID Connect (identity
running on top of OAuth 2.0) [24].

(7) Dashboard (Horizon): Provides a web-based interface to manage services, such as
Nova, Swift, Keystone and others.

2.2 Resiliency and elasticity

Cloud service is synonymous with redundancy and high availability, both characterizing
resiliency. In the event of a hardware failure or a disaster in a data center, when a service is
resilient, all services continue to run with little to no intervention from administrators and
users have no insight into the situation. This provides the seamless user experience that
public clouds provide. Public clouds provide this with their rich feature set and a private
OpenStack deployment can provide a high level of resilience as shown by the enterprise
usage in such platforms, e.g. Walmart’s data center [25]. While Walmart most likely uses a
more robust platform to orchestrate OpenStack than a utility, such as PackStack, the
foundation of OpenStack remains the same. Benkhelifa ef al have discussed the dependence
of society on cloud computing and how distributed and fault-tolerant systems are the
backbone to this dependence[26]. They discuss the ResiliNet Group’s[27] model of survivable
and resilient networks. The work by the ResiliNet Group includes a resilience model known
as the D’R? + DR model in which resiliency is defined as a life cycle. The model outlines the
need to defend, detect, remediate, recover, diagnose and refine. This life cycle can be seen as
the foundation on which the dependence of cloud computing is built.

Traditional resource scaling and elasticity usually require hardware procurement,
operating system installation and platform configuration. However, with a cloud platform,
scaling is accomplished seamlessly through the use of pre-configured images, flavors and
hardware allocations that react in real-time to changing needs or notify administrators of
needs [28]. In OpenStack, elasticity-management permissions can be granted to the end-user.
These permissions are crucial in a situation where a developer locates a need to increase or
decrease the size of a running platform instance. As discussed below in Section 4 regarding
the proposed design, scaling and elasticity in OpenStack in this project are made possible by
horizontal scaling. Horizontal scaling has been described by Millnert and Eker [29] who
describe HoloScale and discuss how horizontal and vertical scaling differ. In brief, horizontal

scaling expands a whole resource unit; whereas, vertical scaling increases the capacity of
already existing resources.

3. Related work

There are many solutions for resilient elastic private cloud OpenStack deployments. These
solutions have been published in research papers and documentation, specifically on the
OpenStack Foundation Documents site [30] and on many Linux Community sites. Many of
these solutions incorporate a full-service stack for large-scale deployment or are all-in-one
systems for proof-of-concept deployments.

Two examples of the existing multi-node enterprise solutions to deploy, manage and
upgrade OpenStack in a data center or enterprise are TripleO [31] and Kolla—Ansible [32].
TripleO is a project in the OpenStack community which aims at deploying, managing and
operating OpenStack-based clouds using OpenStack’s own cloud facilities built on a
foundation of Nova, Ironic, Neutron and Heat. Heat is the automation tool commonly used in
OpenStack to inject logic to different deployment scenarios. A TripleO deployment is called a
cloud-on-cloud deployment [33]. Kolla—Ansible focuses on using the scalable Ansible
automation to deploy OpenStack.

Table 1 summarizes the main distinctions of our study with respect to the related studies
on small-scale private clouds, which we review in the following. We begin by reviewing the
study by Lebre ef al [34] on converting mega data centers to micro data centers by using
OpenStack. The idea of using multi-site data centers to control cloud computing
infrastructures is one that is worthwhile to explore and implement due to the need of
distributed systems contributing to the aspects of latency and high-availability. However,
many small businesses would not benefit from such a highly distributed design [34]. In
contrast, we focus in this paper on the scalable nature of cloud computing which could benefit
small businesses in using OpenStack. The design of a small scale, failure-resistant IaaS cloud
in OpenStack that this paper introduces allows novice administrators to start small and grow.
This approach allows room for substantial growth in respect to the size of the industry. The
example of a small software development company starting with two to three employees and
quickly growing to one hundred can be used to illustrate a good example of how OpenStack’s
scalability can be leveraged.

In [35], discussing OpenStack and Docker, Calinciuc ef al consider building a fully
functional IaaS platform for social media applications. The discussion of Kernel-based
Virtual Machine (KVM) virtualization vs Docker containerization specifically for social media
applications in [35] is important because it highlights the fundamental idea of
containerization being more efficient than traditional virtualization.

Small Dynamic Generic
Study Multinode TaaS scale Configurability virtualization PackStack
Lebre ef al. [34] Yes Yes No Yes Yes No
Calinciuc et al. [35] Yes Yes No Yes No - Docker only ~ No
Awasthi et al [36] Yes Yes No Yes Yes No
Sheela et al. [37] Yes Yes — Paas as well Yes No Yes No
Kengond et al. [38] Yes Yes — PaaS as well No Yes Yes No
Bathia et al. [39] Yes Yes — PaaS Yes No Yes Yes
expandable

Bathia et al. [40] No Yes Yes No Unknown Yes
Suriansyah ef al. [41] Yes Yes Yes No Yes Yes
Our study Yes Yes — PaaS Yes Yes Yes Yes

expandable

IaaS cloud
using
OpenStack

Table 1.

Comparison of our
study against the main
related OpenStack-
based private cloud
studies

ACI

In 2016, a couple years after OpenStack had started to gain traction in the industry,
Awasthi et al. discussed OpenStack in detail and how its scalable nature was key to its
success [36]. Awasthi ef al explain in detail how OpenStack operates and how this operation
allows for OpenStack to simultaneously act as a scalable, hybrid cloud without the burdens
of a public cloud. Having full control of the ecosystem in an open source environment is
key [36].

There are many published papers and documents around the topic of OpenStack and the
various methods to deploy it. In addition to the papers discussed above, a couple more
examples include the work completed in [37] regarding deploying OpenStack on a university
campus and orchestrating a distributed OpenStack in [42]. In [37], Sheela and Choudhary
explore the idea of providing a test bed for students to deploy applications. This concept of
using OpenStack for a specialized area is similar to the small-scale focus in our paper.
However, the deployment strategy outlined in our paper allows for the ability to scale the laaS
workload to a much greater degree that can be deployed on a production level. Nevertheless,
the common challenge among current OpenStack designs is the lack of documentation for the
option of small-scale, dedicated node deployments that may grow in the future. During a
growth period, more infrastructure is needed for development and production. In the current
landscape of OpenStack, there is a gap in a simple deployment method to accomplish this
need for more infrastructure. Many papers exist and discuss OpenStack and specialized uses,
e.g. for social media applications [35] and software-defined network perimeters [43]. In
contrast, this paper is unique in that we demonstrate how a resilient and elastic cloud service
platform can initially be put in place and subsequently be scaled up. Kengond et al [38] focus
on Hadoop as a service; whereas we can allow arbitrary services since we provide a generic
TaaS. While Hadoop could in principle be used to run a developed service on top of it, this
would be much more complex than our direct approach of providing a small-scale private
IaaS cloud. A related mechanism to automatically scale Hadoop clusters based on CPU
utilization measurements has been presented in [44].

Relatively few studies have explored PackStack for configuring private OpenStack
clouds. In the context of cloud computing for education [45], Bathia et al [39, 40] have
employed PackStack for the initial configuration of a private OpenStack cloud but have not
considered dynamic reconfigurations. In contrast, in this study, we employ PackStack for
both the initial configuration as well as the dynamic reconfigurations of a private
OpenStack cloud. Moreover, Bhatia focus strictly on higher education implementations,
whereas we provide a general-purpose private cloud configuration for arbitrary use cases.
Similar to the Bhatia et al. approach, the recent Suriansyah et al. [41] approach is limited in
terms of dynamic reconfigurability. The instance resizing approach in Suriansyah et al
imposes a downtime on the order of 10 s. In contrast, we provide a dynamic instance
reconfiguration (resizing) approach that completely avoids downtime and only incurs a
ping latency increase from sub-one millisecond to the order of four milliseconds during the
reconfiguration.

For completeness, we note that ancillary aspects of operating OpenStack private clouds
that are orthogonal to the design aspects covered in this article have been examined in a few
recent studies. The energy-efficiency management of OpenStack private clouds has been
examined in[46], while the studies [47, 48] have investigated the merging and consolidation of
private clouds. Mechanisms to assure the integrity of the data in OpenStack private clouds
with a blockchain have been explored in [49].

The target audience of this paper are small companies that have a relatively modest
ceiling for growth, but do not want to be inhibited by a lack of infrastructure and platforms
for their developers. A common resolution for the lack of infrastructure and platforms is
usually the move to the public cloud. However, if a cloud offering is used from the beginning,
companies do not have to factor in moving to a cloud platform in the future, which will allow

for maintaining control over the company data. Starting with a private cloud will allow for
cost control in the future by utilizing the model that builds around resiliency and elasticity. In
this paper, the focus is on starting at the simplest level in order to reduce the level of
knowledge needed to enter the OpenStack arena and to use features that may be helpful to the
aforementioned smaller companies. In this way, sub-par hardware can be used at first and
can later be improved as needed. This allows for small companies with limited resources to
get started with a plan for growth in the future while keeping cost initially low.

4. Proposed design
The proposed design in this paper is a small-scale deployment. This type of deployment
focuses on a single feature of a public cloud model, such as IaaS or PaaS. Public cloud models
also provide the features of a small-scale deployment but incur the complexity that a small-
scale deployment avoids. Our design directly addresses the problem of starting an OpenStack
deployment on a small scale while still allowing for substantial future growth in the IaaS and
PaaS models. Our focus is to demonstrate how infrastructure and platforms can be provided
as a service to developers while allowing developers to be enabled to start elastic instances
that can scale at the click of a button. Our OpenStack design allows for the demonstration of
physical compute node failure and virtual machine live migration between compute nodes
while still providing a seamless end-user experience. In this case, the end-users are the
developers who need transparent access to resources in the event of multiple failures.

Three compute nodes are included in the initial IaaS offering in this design. We then
expand the infrastructure to a fourth compute node as part of an experiment to
demonstrate the ability to dynamically add nodes without compromising the availability
of the current nodes that provide IaaS services through OpenStack. The design allows for
the use of the PackStack utility since it focuses on a small-scale deployment and a single
feature while lacking the advanced features of public clouds. Since the focus of this paper
is on resiliency and elasticity, our design includes redundancy wherever possible, such as
hardware RAID for storage at the most basic level and multiple compute nodes on the
logical level of OpenStack providing IaaS. While there is no documented best practice
about the number of nodes that are deployed, we have created a five-node deployment to
fully demonstrate how IaaS can be both resilient and elastic on a small scale. The
deployment initially includes a controller, three compute nodes and one networking node.
The controller and networking node are not logically redundant to simplify the
deployment. The controller node hosts Glance, Swift, Horizon and Keystone while the
compute and networking nodes host Nova and Neutron, respectively. As an experiment, a
fourth compute node is added, bringing the total OpenStack node count to six which
demonstrates the ability to scale the IaaS-focused OpenStack deployment without
compromising availability. Availability is not compromised because the deployment does
not need to be brought offline for a compute node to be added. During the scaling process,
the deployment will gain a standby compute node that can eventually act as an active node
after it is fully added. As discussed in further detail below, each of the nodes will be used to
load balance the new virtual machines that are added. If one node fails, the other nodes are
used to transfer the virtual machines off of the failed node to the active nodes.

The following assumptions have been made in the design of the deployment.

(1) OpenStack handles all software-defined networking concepts and the configurations
of advanced features, such as Generic Routing Encapsulation (GRE) tunneling,
virtual local area networks (VLANS) and Virtual Extensible LAN (VXLANS), are not
complete. Only the basic level of networking configuration is complete to provide
connectivity from the virtual machine LAN.

IaaS cloud
using
OpenStack

ACI

Figure 2.

The OpenStack private
cloud deployment
design focusing on
horizontal growth,
which allows for high-
availability, high-
scalability and
elasticity

(2) The controller node acts as the command and control center for the deployment and
all other nodes communicate directly with the controller node.

The design of the deployment is shown in Figure 2. Note that the basic design focuses on
horizontal scaling to allow for resiliency, elasticity and scalability, as discussed in Section 2.
In Figure 2, the “X” denotes the possibility for a redundant node to be added for scalability
and redundancy. The numbered nodes are the nodes that are implemented in the
demonstration.

The core methodology in this design focuses on a small-scale deployment at first while still
planning for future growth. To do this, multiple considerations are made. First, the hardware
is considered. In a small-scale deployment, the most robust hardware is not needed on all
nodes. However, it must support the most basic functions of the particular service node. For
example, the hardware used for the controller node is a modern HP server with 16 GB of RAM,
dual quad-core processors and 256 GB of RAID1 SSD storage. Since the controller node will
not have redundancy in this OpenStack deployment, reliable hardware must be used. The
same is true for the networking node because there will be no redundancy on the hardware
level outside of the mirrored storage and a backup network interface card. On the other hand,
the hardware for the hypervisors are older SuperMicro servers with 8 GB of RAM, dual hex-
core hyper-threaded Xeon processors and 128 GB of storage. This method allows for a low-
cost, scalable hardware solution that can be added to in the future by adding compute nodes
at a low cost. In total, four compute nodes, one controller node and one networking node are
used. The first three compute nodes are the aforementioned SuperMicro servers with the final
added node being an older HP server, as outlined in Section VILE. The controller and
networking nodes are modern HP servers as noted above.

Overall, the methodology focuses on building a solid foundation that can be added to as
growth happens. This includes using lower-cost hypervisor hardware that can be purchased
second-hand in many cases. If a hypervisor fails due to a hardware failure, the redundancy
compensates for it and the deployment is not compromised. This paper demonstrates how to
add a compute node to the node list after the initial configuration has been completed. This
aspect is key for the feature of horizontal scalability. Note that OpenStack is an open source-
based cloud operating system and this paper’s focus is starting small while planning for future
growth. Therefore, our initial deployment provides a solid foundation and has low cost. These
two foci allow for a low-cost startup while maintaining the ability to grow the IaaS and PaaS
models at scale. This methodology allows for a small company with limited funds to build a
robust infrastructure backbone for the future at a very low startup cost. The methodology also
allows for the demonstration of tolerating failure and proving elasticity for instances.

5. Implementation strategy
Implementing a small OpenStack deployment can be done in a multitude of ways[50], such as
manually or through a utility, such as DevStack [51] or PackStack [52]. DevStack, which is an

‘ Controller 1 [< [Controller X | <> [Controller X |
Glance, Cinder, Swift,
Keystone, Horizon

‘ Networking 1 | <> [Networking X | <> [Networking X |
Neutron

\ Compute 1 [<= [Compute2 [<> Compute3 |
Nova Nova Nova

Note(s): The ‘X’ nodes, which allow for future growth, are not used in this study

open-source shell script, is well-suited for large-scale deployments due to the modularity of
the DevStack extensible scripts. As we target a small-scale deployment, we use PackStack in
conjunction with CentOS 7. The simplicity that PackStack affords makes it ideal for
dedicated, small-scale deployments that focus on IaaS and PaaS.

While PackStack is generally considered a deployment method for proof-of-concept
cloud services [53], there are many considerations to take into account when deploying
PackStack for small-scale production. These are shown by the process outlined in detail
below for each respective node. At the end of the implementation, the OpenStack
deployment is prepared to launch instances on the same private network subnet, migrate
instances between compute nodes, scale instances, dynamically add Nova compute nodes
and manage permissions for different users in different projects once the project
preparations in Section 6 are complete. This paper focuses heavily on the IaaS part of
OpenStack, which can be easily expanded to PaaS by creating relevant images to be
launched in virtual machine instances. In addition, security and tracking are demonstrated
by available permission management and usage metrics; although they will not be as
robust as in a public cloud. The implementation of OpenStack through PackStack relies on
the assumption that IaaS must come before PaaS. Therefore, it should not be expected to
seerobust PaaS, but rather resilient and elastic instances that can be scaled at the click of a
button in the Horizon dashboard.

As afirst step, each of the five nodes is prepared as detailed in the supplementary material
to this article [54] to configure static Internet Protocol (IP) addresses and to prepare the
controller node. The installation uses PackStack-specific Puppet modules and manifests to
install all the required dependencies on each node. While it is possible to install each service
manually on each node, that would be impractical given the amount of time it takes in
comparison to using a tool, such as PackStack. The utility also reduces the room for error that
a manual installation presents. In a larger-scale production deployment, customizing each
node more fully or using a larger-scale tool would be preferred. This could be done with
TripleO or Kolla—Ansible.

6. Project preparation

6.1 Project and project member creation

To help with security, isolation and best practice adherence; a separate project and dedicated
project member user is created, as described in more detail in [54]. From the Identity Tab, a
new project is created by clicking Create Project. Quotas are set here since resources are
limited for the project. For this demonstration, a project called projectl is created with a single
member user called projectl. Quotas are also set to limit the vCPUs and RAM available to the
project. When isolating projects and users in Horizon, Keystone is used on the backend to
verify the identity of users and their different project permissions.

6.2 Image and flavor creations

Before virtual machine instances can be launched, flavors and images are defined on the
administrator side of OpenStack. After the image is created, a flavor is defined and assigned
to the new project. Although there are defined default flavors, a custom flavor that defines
virtual central processing unit (vCPUs), RAM, Root Disk Size, Ephemeral Disk Size and
permissions is created and assigned to the project as to adhere more closely to the previously
assigned quotas. A flavor called al.small with 1 vCPU, 512 MB of RAM, and a 1 GB Root Disk
provides a lightweight instance option to demonstrate scalability. Another flavor called
a2.medium with 2 vCPUs, 1024 MB of RAM, and a 1 GB Root Disk provides a higher
performing option that can be used to scale up an instance.

IaaS cloud
using
OpenStack

ACI

Figure 3.

The created instances
with their IP addresses
in the range of the
internal network

7. Results and experiments

Following the completion of the setup and project preparation, virtual instances can now be
created. OpenStack will automatically load balance new instances across compute nodes by
default, but instances can be live migrated to different compute nodes with no downtime. In
addition, instances can have flavors changed, allowing for elasticity. As shown in the last
stress test experiment in Section 7.6, the auto scheduling by the “nova-scheduler” service for
instances is corrupted, forcing all instances to be scheduled to the same node, which caused
the deployment to crash, as elaborated in Section 7.6. All reported quantitative evaluation
results are based on the averages of three independent measurement replications.

7.1 Instance creation

To create a virtual machine instance, the dedicated projectl user logs into the Horizon
dashboard and expands the Compute tab under the Project section. The “Launch Instance”
option is chosen. Figure 3 shows the newly created instances with the al.small flavor. The
prior created internal network with IP address range 172.25.1.0/24 has randomly assigned an
IP address in the address range for each instance.

7.2 Instance elasticity

As an experiment of elasticity and latency comparisons, instancel at 172.25.1.178 is changed
from the al.small flavor to the a2.medium flavor. Prior to the change, the blue line in Figure 4
shows samples of the latency between the two instances when both instances are at the same
al.small flavor as measured in milliseconds on ping commands. The blue line includes the
pings with sequence numbers 0-9, whereby the pings are spaced one second apart, and is
considered the control to which other tests will be compared. Note that all ping latency values
are below 0.8 ms and the average is 0.665 ms. There are no outlying values outside of the
vertical axis.

Following the control group being created, an experiment of changing instancel at
172.25.1.178 to the a2.medium flavor is started. The orange line in Figure 4 shows the
latencies of the pings during which the resize from al.small to a2.medium was accomplished.
Many of the data points run above the vertical axis of the diagram after the ping with
sequence number 1 while the average latency comes to 4.723 ms. At the ping with sequence
number 9, the value returns to the graph area. This indicates that the connectivity remains
intact while the resize takes place and resumes to controlled latency levels at the ping with
sequence number 9.

Next, the light grey line in Figure 4 shows the latency after the resize has taken place and
the instances a have been stable for 30 s. As shown, the latency resumes to a stable, sub-1 ms
delay and the data points remain on the graph. Due to the increase of resources, specifically
vCPUs, the latency improved slightly to an average of 0.566 ms in comparison to the 0.665 ms
when both instances were at the al.small flavor. This demonstrates that the assigned
resources have a direct relationship to the latency in regard to the OpenStack internal
networking technologies.

As a final test to further examine the relationship between assigned resources and latency,
instance2 at 172.25.1.101 is resized to the a2.medium flavor which increases the RAM and

O Instance Name ~ Image Name IP Address Flavor
O instance1 cirros 172.25.1.178 al.small
O instance2 cirros 172.25.1.101 al.small

using

[aaS cloud
OpenStack

WNIPIW' 78 SIJULISUI)0 SUYRW JOAB[] WNIPAWL 78 0) PIZISAI SI (J[BWS [€ UO OS[B I0J2q) 7oUr)ISUl
TOA0IOW ((JSOJ) JOAR[J WINIPIW Zk 0] (210J2g) JOAR[J [[BWS [€ WO pagueyd SI [0urIsu] :(S)dI0N

wrnipsw-ze 504 Suung—— 3J0jg——

Jaquiny aduanbag Suld

6 8 L 9 S v € [4 T 0

S00
10
Sto
[4Y]
sT0
SE0
14"
S¥0

SS0
90
S9°0
Lo
SL0
80
S80
60
S60

SPU0dasI||IA Ul Aduaje

Figure 4.

Instance elasticity and

latency experiment

ACI

vCPU count by two-fold. The gold line in Figure 4 shows that the average latency very
slightly improved over a sequence of ten pings further from the previous configuration of
instancel being a2.medium and instance2 being al.small.

Overall, elasticity in OpenStack is seamless as shown by the experiment. Even with
increased latency during a resize for a ten-ping sequence, the difference is unnoticeable in
most situations since there are no ping drops. A common example of this would be resizing an
instance with a web server platform. If the web server has some additional latency on the
order of a few seconds or less for a duration on the order of 10 s, the clients it is serving will
barely notice. In addition to demonstrating the ability to have elastic instances, we validated
that the amount of hardware allocated to an instance directly affects its performance.

7.3 Instance migration

Instance are migrated in OpenStack for a variety of reasons. Two reasons are hardware
maintenance or hardware failure. The hardware failure case is further explored in Section 7.4
as a demonstration of OpenStack providing a platform for instances to be failure-resistant,
also known as the feature of instance resilience.

When hardware maintenance is needed in an OpenStack deployment, it can generally be
assumed that it is planned. Unplanned migrations leading to instance resilience are discussed
in the next section. For planned migrations, two different scenarios are tested. The first
scenario is migrating an instance with no downtime. In OpenStack, this is known as a live
migration. The second scenario is known as a cold migration, where the instance is shut down
for a small amount of time. Cold migration can be used if multiple instances providing the
same service are behind a load balancer that can determine when an instance is down and
direct requests to an instance that is functioning.

7.3.1 Live migration. Live migration is completed through the Admin tab of the Project
under the Compute Instances subsection. In this live migration, the instance is not shut
down and the migration is seamless for the end user. To demonstrate this, instance2 on
computel is live migrated to compute2 which also hosts instancel. Figure 5a shows the
latency during the live migration. The live migration takes place starting at the ping with
sequence number 12 and ends at the ping with sequence number 18. Note that there is the
loss of the pings with sequence numbers 14 and 15 along with the increase in latency of the
pings with sequence numbers 12 and 13. Following the live migration, the latency returns
to similar levels as prior to the migration. The ping losses for sequence numbers 14 and 15
could be due to many variables. Further study is required to investigate this behavior.
However, two packet drops is a relatively small loss.

7.3.2 Cold migration. In the cold migration scenario, the instance is shut down, causing
more downtime. However, the persistent storage volume and the networking settings are
kept so that no settings are changed. To fully demonstrate this cold migration scenario, a
larger ping sequence sample consisting of 30 pings (each corresponding to 1 s) is taken and
displayed in Figure 5b. Following the cold migration of instance2 from compute2 to
computel, after one outlier at 0.46 ms, the latency returns to the expected value of around
0.4 ms that was present before (when the two instances were hosted on two separate compute
host nodes).

Overall, in both the live and cold migration scenarios, the instance migration—when
needed in the context of hardware maintenance—is seamless with close to zero downtime.
The cold migration is the safer option due to OpenStack completely shutting down the
instance and starting it back up on the new compute node. This cold migration will reduce the
risk of data loss; although a live migration is fairly low risk. As shown by the extensive
documentation on OpenStack [55], live migrations have more room for error but are highly
desirable due to next to zero downtime.

Latency in Milliseconds
-2 EBEbke bk

Latency in Milliseconds

Latency in Milliseconds

- ~
[*Y " N n
=)
5

4
n
o
L J

o
-
o

11 12 13 14 15 16 17 18
Ping Sequence Number

(a) Live migration; pings 14 and 15 lost

045

10 15 20 2
Ping Sequence Number

(b) Cold migration; pings 14-27 lost
1.6

14
1.2

0.8

0.6 o

04 | o
0.2

101 11 121 131 141 151

Ping Sequence Number
(¢) Evacuation migration; pings 110-158 lost

[aaS cloud

using
OpenStack

L)

19

o °

30

*
=3

Figure 5.

Migration scenarios of

instance2 from

computel to compute2;

161 the pings with the
indicated sequence

numbers are lost

ACI

7.4 Instance resilience: evacuation migration

Hardware outages can be both planned or abrupt (unplanned). For abrupt hardware outages,
OpenStack offers a feature known as evacuation. Similar to all other demonstrated
OpenStack features, evacuation can be done via the command line or via the graphical user
interface (GUI). Having a physical compute node fail but the instance surviving is known as
resilience. It is expected that an instance has resilience to survive failure and continues to
function after a reasonably short period of time.

To demonstrate instance evacuation, instance2, hosted on computel, is evacuated after
computel is purposefully forced to fail by pulling the physical power cord to the SuperMicro
server. This demonstrates a real-life disaster scenario of an abrupt node failure.

Prior to the disaster affecting computel, the latency between pings is close to
the average latency as previously shown, around 0.5 ms. Starting at ping sequence 110,
computel is lost after the power cord is pulled, see Figure 5c. Following this loss, the
admin user from the GUI Admin Compute Hypervisor section is leveraged to evacuate
the failed computel host, which is reported as being failed after 30 s in Horizon. Note that
the 30 s is the delay for OpenStack to detect the outage. After Evacuate Host is chosen, the
target host compute2 is selected. Then, with about 19 s of additional delay [pings 110-158
lost in Figure 5c¢ corresponding to 49 s of lost pings = 30 s (for OpenStack) + 19 s
(additional delay)], instance2 is back up and instancel returned to being able to ping
instance2 with delays in the 0.5 ms range. Figure 5¢ shows a summary of the downtime
that the computel disaster caused. The dropped packets result in a generally acceptable
amount of downtime given the unique circumstances.

7.5 Compute node addition

One of the primary OpenStack features is scalability. Scalability is commonly known as
the ability to add resources horizontally [29]. In this paper, we explore why PackStack
(which is generally reserved for proof-of-concept clouds) is desirable for small-scale
deployments due to the simplicity of the initial deployment and the addition of
compute nodes.

In this experiment, PackStack facilitates a compute node addition named compute4.
This expands the entire compute node farm to 4 nodes instead of 3 and distinctly
demonstrates the scalability that OpenStack and PackStack offer. By adding an older HP
server with 24 vCPUs and 16 GB of RAM as compute4 node, the compute node farm is
increased. This demonstrates how PackStack facilitates business by allowing for
uninterrupted scalability to increase capacity while also showing that heterogenous
hardware can easily be used. Note that this node addition is conducted live and no
downtime is needed.

In order to add the additional compute node, the original PackStack answer file is
duplicated. This duplicated file is then changed in two ways. The fourth compute node
is prepared with the same steps as in Section 5. The “EXCLUDE_SERVERS” parameter is
changed to include all the current working nodes. This includes the controller, networking,
computel, compute2 and compute3. Finally, the “CONFIG_COMPUTE_HOSTS” is
appended with the static IP address set on the new compute-node-to-be. Once these
parameters are changed, the answer file is run again with the “packstack” command. This
time, the configuration of the current nodes will be skipped and the new node will be added
without any downtime to the cloud deployment. After the fourth compute node has been
added, instances can be migrated or built on top of it, just as if it was part of the original
deployment. Two use cases for this scenario may be a planned decommissioning of a compute
node or the need to further scale up the compute node farm.

Overall, the addition of compute4 to the OpenStack deployment demonstrates the
immense flexibility for compute node scalability offered by PackStack.

7.6 Stress test experiment

To further test the resiliency, one final experiment is conducted to test the robustness of the
deployment. A new project is created that does not include any quotas, allowing for an
unlimited number of instances to be created across the four nodes. The motivation for this
experiment is to observe how long the compute nodes can function while instances are over-
allocated in regard to the physically available hardware. This experiment can be viewed as a
stress test.

The first step of this experiment is creating a project and dedicated user as done prior. The
project is then verified that quotas (set to unlimited) are set above the actual resources
available (80 vCPUs and 46 GB RAM) in the OpenStack deployment. To further simulate this,
a flavor is created called bl.small. The bl.small flavor has an allotment of 2 vCPUs and 1 GB
of RAM. This should allow for 40 simultaneous instances to be run at one time fairly easily
while consuming all of the vCPUs in the deployment and 40/46 = 87% of the RAM.

The stress test is conducted as follows. In total, 40 instances are created in groups of 10. At
each group of 10, the latency average of 10 pings is recorded. The latency average is recorded
on each addition of 10 instances after a 30 stability period is seen. Finally, groups of 10
instances are added until the OpenStack deployment crashes. The experiments demonstrated
that the deployment crashes between 50 and 60 instances, specifically allowing 58 instances
consuming more resources than the Horizon dashboard reported as available. However, the
experiment also demonstrated that OpenStack’s logical allocation of RAM is not the limiting
factor since 46 instances would consume 100% of the available RAM, even though the
hardware’s physical usage was not 100% of the available RAM at the 46 instance mark based
on the “top” command in CentOS 7. However, we were able to go past that mark, up to 58
instances, even though we should not have been able to according to the amount of logically
available RAM that OpenStack was reporting as available in Horizon. This is most likely due
to instances not always consuming the entire allocation of RAM on the physical hardware.
However, it is best practice to adhere to the logical amount of RAM that OpenStack presents
to avoid cases where increased load on an instance pushes physical RAM usage. Figure 6
shows the average 10 ping latency between 2 instances at each node count mark starting at
10. As shown in Figure 6, as more nodes are added, the latency increases.

During the experiment, the resource usage on the compute nodes is observed, and it is
noted that the logical static usage statistics reported from the controller node are not accurate
since the controller reports on a block static level based on the number of instances. For
example, when 50 instances are running, the controller node reports that the computel and
compute2 nodes each were using 16 GB of RAM, even though each compute node had only 8
GB of RAM available. However, the accurate statistic pulled from the “top” command on an

1 Average: 2.119ms

Latency in Milliseconds
[6)]

0 10 20 30 40 50 60 70
Node Count

IaaS cloud
using
OpenStack

Figure 6.
Stress test latency as a
function of node count

ACI

Figure 7.
Spawning failures per
10 instance spawns

SSH session indicated that only 4 GB of RAM were used on each compute node (of the 8 GB or
RAM available on each compute node).

Figure 7 shows the evidence that as the controller becomes more resource-starved,
instances begin to fail to spawn before finally crashing at the 59 instance count. With each
failure we manually spawned an additional group of the number of failed instances. This
ensures that the node count is accurate in each block of 10 spawned instances. OpenStack was
able to continue well past the 80 vCPU allocation that 40 instances used. We observe from
Figure 7 that the spawning issues started above the 20 instance count; and then increased
exponentially.

Overall, this final experiment shows important attributes in regard to the controller and
compute nodes. The controller’s CPU is the main bottleneck. Once the instance count hits 50,
the controller routinely uses anywhere from 80%-90% of the 8 core CPU. At the 50 instance
count, an abnormality of the controller scheduling all instances to one compute node is
observed and this is the first sign of failure even though all 10 instances from the 40 to 50
instance mark count did spawn successfully after having to manually re-spawn 3 instances.
Normally, the controller would be able to equally distribute instances across the 4 compute
nodes, similar to the distribution of instances 1 through 40.

Building on the insights from the present stress text experiment, a future experiment
could monitor the controller’s load closely as instances spawn and provide a ratio for the
specifications needed on the controller to how many instances it can support. However,
the controller being fully loaded in the conducted stress test experiment was expected since
the controller had Glance, Cinder, Swift, Keystone and Horizon all running on it. If these
services are split up among different controller or storage nodes, it is highly likely that the
deployment could support more running instances.

8. Conclusions and future direction

We have addressed a research gap for OpenStack in the applied computing area, namely the
use of an OpenStack deployment utility, such as PackStack (which is generally considered a
proof-of-concept tool) to deploy a small-scale private [aaS OpenStack cloud. We demonstrated
that the PackStack utility provides an effective way for small companies to take advantage of
the convoluted OpenStack software platform to orchestrate distributed computing. The
paper has shed light on the needed components to deploy a fully functioning IaaS cloud so as
to ease the development and operations burdens compared to the full suite of OpenStack
features. In addition, this paper demonstrated how using PackStack as a deployment tool is a
viable option for a private production OpenStack Iaa$S cloud due to the ease of implementing
elasticity and resiliency through node addition and migrations.

-

Spawning Failures
O N W hOON ©®© O

10 20 30 40 50 60
Node Count

Although OpenStack in the capacity demonstrated in this paper may not be ideal for all IaaS cloud
deployments, the concept of using a highly-supported and developed tool on a small scale using
presents many advantages. While the design in this paper is able to be horizontally scaled OpenStack
rather easily, the efficiency of the hardware and the administration time were not taken into p
account. An interesting future research direction is to examine the latency impact of
hardware acceleration modules [56, 57] as well as fast packet processing paradigms, e.g.
[68-61], for low-latency network packet processing. Moreover, future research should
explore high-availability strategies for private clouds, e.g. utilizing OpenStack with
clustering.

References

1. Hwang K, Dongarra], Fox GC. Distributed and cloud computing: from parallel processing to the
internet of things. Burlington, MA: Morgan Kaufmann; 2012.

2. Potdar AM, Narayan D, Kengond S, Mulla MM. Performance evaluation of Docker container and
virtual machine. Proc Comp Sci. 2020; 171: 1419-28.

3. Rimal BP, Choi E, Lumb L. A taxonomy and survey of cloud computing systems. In: Proc. IEEE
Fifth International Joint Conference on INC, IMS and IDC; 2009: 44-51.

4. Rimal BP, Lumb I. The rise of cloud computing in the era of emerging networked society. In:
Cloud computing: principles, systems and applications. Springer; 2017: 3-25.

5. Foster I, Gannon DB. Cloud computing for science and engineering. Cambridge, MA: MIT
Press; 2017.

6. Kai Z, Youyu L, Qi L, Hao SC, Liping Z. Building a private cloud platform based on open source
software OpenStack. In: Proc. IEEE International Conference on Big Data and Social Sciences
(ICBDSS); 2020: 84-87.

7. Silverman B, Solberg M. OpenStack for architects: design production-ready private cloud
infrastructure. Birmingham: Packt Publishing; 2018.

8. OpenStack. OpenStack docs: OpenStack compute (nova); 2020. Available from: https://docs.
openstack.org/nova/latest/ [accessed 27 September 2020].

9. OpenStack. OpenStack docs: all-in-one single machine (nova); 2020. https://docs.openstack.org/
devstack/ [accessed 27 September 2020].

10. Microsoft. What are public, private, and hybrid clouds?; 2020. Available from: https://azure.
microsoft.com/en-us/overview/what-are-private-public-hybrid-clouds/#public-cloud/ [accessed 27
September 2020].

11. Hoeschele T, Dietzel C, Kopp D, Fitzek FH, Reisslein M. Importance of internet exchange point

(IXP) infrastructure for 5G: estimating the impact of 5G use cases. Telecommun. Pol.. 2021; 45(3):
102091.1-18.

12. Navarro-Ortiz], Romero-Diaz P, Sendra S, Ameigeiras P, Ramos-Munoz J], Lopez-Soler JM. A
survey on 5G usage scenarios and traffic models. IEEE Commun Surv Tutorials. 2020;
22(2): 905-29.

13. Rostami A. Private 5G networks for vertical industries: deployment and operation models. In:
Proc. IEEE 2nd 5G World Forum (5GWF); 2019: 433-9.

14. Varga P, Peto], Franko A, Balla D, Haja D, Janky F, Soos G, Ficzere D, Maliosz M, Toka L. 5G
support for industrial IoT applications—Challenges, solutions, and research gaps. Sensors. 2020;
20(3): 828.1-43.

15. Abidin SSZ, Husin MH. Improving accessibility and security on document management system: a
Malaysian case study. App Comp Info. 2020; 16(1/2): 137-54.

16. Thorat C, Inamdar V. Implementation of new hybrid lightweight cryptosystem. App Com Info.
2020; 16(1/2): 195-206.

https://docs.openstack.org/nova/latest/
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/devstack/
https://docs.openstack.org/devstack/
https://azure.microsoft.com/en-us/overview/what-are-private-public-hybrid-clouds/#public-cloud/
https://azure.microsoft.com/en-us/overview/what-are-private-public-hybrid-clouds/#public-cloud/

ACI

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Akbar JM, et al Joint method using Akamatsu and discrete wavelet transform for image
restoration. App Com Info. 2021. doi: 10.1016/5.aci.2019.10.002.

Nannia L, Ghidoni S, Brahnam S. Ensemble of convolutional neural networks for bioimage
classification. App Com Info. 2020; 17(1): 19-35.

Mahalingam T, Subramoniam M. A robust single and multiple moving object detection, tracking
and classification. App Com Info. 2020; 17(1): 2-18.

Monsalve-Pulido J, Aguilar J, Montoya E, Salazar C. Autonomous recommender system
architecture for virtual learning environments. App Com Info. 2021. doi: 10.1016/j.aci.2020.03.001.

Mustafa A. The personalization of e-learning systems with the contrast of strategic knowledge
and learner’s learning preferences: an investigatory analysis. App Com Info. 2020; 17(1): 153-67.

Pinho T, Coelho], Oliveira P, Oliveira B, Marques A, Rasinmiki], Moreira A, Veiga G,
Boaventura-Cunha J. Routing and schedule simulation of a biomass energy supply chain through
SimPy simulation package. App Com Info. 2020; 17(1): 36-52.

TechGenix. Software development in the cloud: benefits and challenges; 2020. http://techgenix.
com/software-development-in-the-cloud/ [accessed 18 November 2020].

OpenStack. OpenStack documentation; 2020. https://docs.openstack.org/keystone/latest/getting-
started/architecture. html [accessed 21 February 2021].

SuperUser OpenStack. Software development in the cloud: benefits and challenges; 2020. https://
superuser.openstack.org/articles/inside-walmartlabs-and-its-openstack-core/ [accessed 27
September 2020].

Welsh T, Benkhelifa E. On resilience in cloud computing: a survey of techniques across the cloud
domain. ACM Comput Surv. 2020; 53(3). [Online]. doi: 10.1145/3388922.

Resilinets Group. ResiliNetsWiki; 2016. Available from: https:/resilinets.org/ [accessed 21
February 2021].

OpenStack. Capacity planning and scaling; 2020. https://docs.openstack.org/operations-guide/ops-
capacity-planning-scaling.html [accessed 18 November 2020].

Millnert V, Eker J. Holoscale: horizontal and vertical scaling of cloud resources. In: Proc. IEEE/
ACM 13th International Conference on Utility and Cloud Computing (UCC); 2020: 196-205.

OpenStack. Documentation for Ussuri; 2020. https://docs.openstack.org/ussuri/ [accessed 27
September 2020].

OpenStack. TripleO documentation; 2020. https://docs.openstack.org/tripleo-docs/latest [accessed
12 November 2020].

OpenStack. TripleO documentation; 2020. https://docs.openstack.org/kolla-ansible/latest/
[accessed 14 November 2020].

RedHat. TripleO documentation; 2020. https://access.redhat.com/documentation/en-us/red_hat_
openstack_platform/16.1/ [accessed 18 Nov 2020].

Lebre A, Pastor J, Simonet A, Desprez F. Revising OpenStack to operate fog/edge computing
infrastructures. In Proc. IEEE International Conference on Cloud Engineering (IC2E), 2017: 138-48.

Calinciuc A, Spoiala C, Turcu C, Filote C. OpenStack and Docker: building a high-performance
IaaS platform for interactive social media applications. In: Proc. 13th International Conference on
Development and Application Systems, 05 2016: 287-90.

Awasthi S, Pathak A, Kapoor L. OpenStack-Paradigm shift to open source cloud computing & its
integration. In: Proc. 2nd International Conference on Contemporary Computing and Informatics
(IC3D); 2016: 112-19.

Sheela PS, Choudhary M. Deploying an OpenStack cloud computing framework for university
campus. In: Proc. International Conference on Computing, Communication and Automation
(ICCCA); 2017: 819-24.

https://doi.org/10.1016/j.aci.2019.10.002
https://doi.org/10.1016/j.aci.2020.03.001
http://techgenix.com/software-development-in-the-cloud/
http://techgenix.com/software-development-in-the-cloud/
https://docs.openstack.org/keystone/latest/getting-started/architecture.html
https://docs.openstack.org/keystone/latest/getting-started/architecture.html
https://superuser.openstack.org/articles/inside-walmartlabs-and-its-openstack-core/
https://superuser.openstack.org/articles/inside-walmartlabs-and-its-openstack-core/
https://doi.org/10.1145/3388922
https://resilinets.org/
https://docs.openstack.org/operations-guide/ops-capacity-planning-scaling.html
https://docs.openstack.org/operations-guide/ops-capacity-planning-scaling.html
https://docs.openstack.org/ussuri/
https://docs.openstack.org/tripleo-docs/latest
https://docs.openstack.org/kolla-ansible/latest/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Kengond S, Narayan D, Mulla M. Hadoop as a service in OpenStack. Emerg Res Elec. Computer
Science and Technology, Lecture Notes in Electrical Engineering. 545. Singapore: Springer. 2019;
223-33. doi: 10.1007/978-981-13-5802-9_21.

Bhatia G, Al Noutaki I, Al Ruzeiqi S, Al Maskari J. Design and implementation of private cloud for
higher education using OpenStack. In Proc. IEEE Majan International Conference (MIC), 2018,
1-6.

Bhatia G and Al Sulti IH, CASCloud. An open source private cloud for higher education,” In Proc.
IEEE International Arab Conference on Information Technology (ACIT), 2019: 14-20.

Suriansyah MI, Mulyana I, Sanger JB, Winata S. Compute function analysis utilizing IAAS
private cloud computing service model in Packstack development. ILKOM] Ilmiah. 2021;
13(1): 10-16.

Haja D, Szabo M, Szalay M, Nagy A, Kern A, Toka L, Sonkoly B. How to orchestrate a distributed
OpenStack. In: Proc. IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS); 2018: 293-98.

Tkachova O, Salim M]J, Yahya AR. An analysis of SDN-OpenStack integration. In: Proc. Second
International Scientific-Practical Conference Problems of Infocommunications Science and
Technology (PIC S T); 2015: 60-2.

Hosamani N, Albur N, Yaji P, Mulla MM, Narayan D. Elastic provisioning of Hadoop clusters on
OpenStack private cloud. In: Proc. IEEE 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT); 2020: 1-7.

Borse Y, Gokhale S. Cloud computing platform for education system: a review. Inter] Comp Appl.
2019; 177(9): 41-5.

Prameela P, Gadagi P, Gudi R, Patil S, Narayan D. Energy-efficient VM management in
OpenStack-based private cloud. Adv Comp Net Comm. 2020; 1: 541.

Andreetto P, Chiarello F, Costa F, Crescente A, Fantinel S, Fanzago F, Konomi E, Mazzon PE,
Menguzzato M, Segatta M, et al Merging OpenStack-based private clouds: the case of
cloudveneto.it. in EP] Web of Conferences. 2019; 214: 07010.

Pyati M, Narayan D, Kengond S. Energy-efficient and dynamic consolidation of virtual machines
in OpenStack-based private cloud. Procedia Computer Science. 2020; 171: 2343-52.

Patil A, Jha A, Mulla MM, Narayan D, Kengond S. Data provenance assurance for cloud storage
using blockchain. In: Proc. IEEE International Conference on Advances in Computing,
Communication and Materials (ICACCM); 2020: 443-8.

Awasthi A, Gupta PR. Comparison of OpenStack installers. Inter] Innov Sci, Eng Techno. 2015;
2(9): 744-8.

OpenStack. OpenStack documentation; 2020. Available from: https://docs.openstack.org/devstack/
latest/ [accessed 25 October 2020].

Various Contributors. redhat-openstack/ packstack; 2020. Available from: https:/github.com/
redhat-openstack/packstack [accessed 25 September 2020].

RDO Project. PackStack: create a proof of concept cloud; 2020. Available from: https://www.
rdoproject.org/install/packstack/ [accessed 25 September 2020].

Heuchert SA., Rimal BP, Reisslein M Wang Y. Design of a small-scale and failure-resistant IaaS
cloud using OpenStack (supplementary material); 2021. Available from: https:/github.com/
socketsetter/openstack/blob/main/SmallScaleOSCloud_Suppl.pdf.

OpenStack. Live-migration; 2020. Available from: https://docs.openstack.org/neutron/pike/
contributor/internals/live.html [accessed 8 November 2020].

Linguaglossa L, Lange S, Pontarelli S, Rétvari G, Rossi D, Zinner T, Bifulco R, Jarschel M, Bianchi
G. Survey of performance acceleration techniques for network function virtualization. Proc IEEE.
2019; 107(4): 746-64.

IaaS cloud
using
OpenStack

https://doi.org/10.1007/978-981-13-5802-9_21
https://docs.openstack.org/devstack/latest/
https://docs.openstack.org/devstack/latest/
https://github.com/redhat-openstack/packstack
https://github.com/redhat-openstack/packstack
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://github.com/socketsetter/openstack/blob/main/SmallScaleOSCloud_Suppl.pdf
https://github.com/socketsetter/openstack/blob/main/SmallScaleOSCloud_Suppl.pdf
https://docs.openstack.org/neutron/pike/contributor/internals/live.html
https://docs.openstack.org/neutron/pike/contributor/internals/live.html

ACI

57.

58.

59.

60.

61.

Shantharama P, Thyagaturu AS, Reisslein M. Hardware-accelerated platforms and
infrastructures for network functions: a survey of enabling technologies and research studies.
IEEE Access. 2020; 8: 132 021-085.

Cerovi¢ D, Del Piccolo V, Amamou A, Haddadou K, Pujolle G. Fast packet processing: a survey.
IEEE Commun Surv Tutorials. 2018; 20(4): 3645-76.

Fei X, Liu F, Zhang Q, Jin H, Hu H. Paving the way for NFV acceleration: a taxonomy, survey and
future directions. ACM Comput Surv (Csur). 2020; 53(4): 1-42.

Fujimoto K, Matsui K, Akutsu M. KBP: Kernel enhancements for low-latency networking without
application customization in virtual server. In: Proc. IEEE 18th Annual Consumer
Communications Networking Conference (CCNC); 2021: 1-7.

Xiang Z, Gabriel F, Urbano E, Nguyen GT, Reisslein M, Fitzek FH. Reducing latency in virtual
machines: enabling tactile Internet for human-machine co-working. IEEE] Selected Areas
Commun. 2019; 37(5): 1098-116.

Corresponding author
Martin Reisslein can be contacted at: reisslein@asu.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

mailto:reisslein@asu.edu

	Design of a small-scale and failure-resistant IaaS cloud using OpenStack
	Introduction
	Background
	OpenStack
	Resiliency and elasticity

	Related work
	Proposed design
	Implementation strategy
	Project preparation
	Project and project member creation
	Image and flavor creations

	Results and experiments
	Instance creation
	Instance elasticity
	Instance migration
	Live migration
	Cold migration

	Instance resilience: evacuation migration
	Compute node addition
	Stress test experiment

	Conclusions and future direction
	References

